![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This volume describes prominent methodologies developed by laboratories that have been leading the field of quantitative proteomics by mass spectrometry. The procedures for performing the experiments are described in an easy-to-understand manner with many technical details that usually are not reported in typical research articles. This second edition of Quantitative Proteomics by Mass Spectrometry provides a broad perspective of the methodologies used for quantifying proteins and post-translational modifications in different types of biomedical specimens. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and thorough, Quantitative Proteomics by Mass Spectrometry, Second Edition is a valuable resource to help researchers understand and learn about the latest tools used in the study of quantitative proteomics by mass spectrometry.
This thesis reports studies on the substrate specificity of crucial ketosynthase (KS) domains from trans-AT Polyketide Synthases (PKSs). Using a combination of electrospray ionisation-mass spectrometry (ESI-MS) and simple N-acetyl cysteamine (SNAC) substrate mimics, the specificity of a range of KS domains from the bacillaene and psymberin PKSs have been succsessfully studied with regard to the initial acylation step of KS-catalysis. In addition, the ability to alter the substrate tolerance of KS domains by simple point mutations in the active site has been demonstrated. A series of acyl-ACPs have been synthesised using a novel methodology and employed to probe the substrate specificity of both KS domains and the previously uncharcterised acyl hydrolase domain, PedC. KS-catalysed chain elongation reactions have also been conducted and monitored by ESI-MS/MS. All KS domains studied exhibited higher substrate specificity at the elongation step than in the preceeding acylation step. Furthermore, a mechanism of reversible acylation is proposed using the PsyA ACP1-KS1 di-domain. The findings in this thesis provide important insights into mechanisms of KS specificity and show that mutagenesis can be used to expand the repertoire of acceptable substrates for future PKS engineering.
Mass spectrometry underwent dramatic changes during the decade of the 1980s. Fast atom bombardment (F AB) ionization, developed by Barber and coworkers, made it possible for all mass spectrometry laboratories to analyze polar, highly functionalized organic molecules, and in some cases ionic, inorganic, and organometallic compounds. The emphasis of much of this work was on molecular weight determination. Parallel with the development of ionization methods (molecular weight mass spectrometry) for polar biological molecules, the increased mass range of sector and quadrupole mass spectrometers and the development of new instruments for tandem mass spectrometry fostered a new era in structural mass spectrometry. It was during this same period that new instrument technologies, such as Fourier transform ion cyclotron resonance, radio frequency quadrupole ion trap, and new types of time-of-flight mass spectrometers, began to emerge as useful analytical instruments. In addi tion, laser methods useful for both sample ionization and activation became commonplace in almost every analytical mass spectrometry laboratory. In the last 5 years, there has been explosive growth in the area of biological mass spectrometry. Such ionization methods as electrospray and matrix-assisted laser desorption ionization (MALDI) have opened new frontiers for both molecular weight and structural mass spectrometry, with mass spectrometry being used for analysis at the picomole and even femto mole levels. In ideal cases, subfemtomole sample levels can be successfully analyzed. Sample-handling methods are now the limiting factor in analyz ing trace amounts of biological samples."
The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.
This thesis represents the first wide-field photometric and spectroscopic survey of star clusters in the nearby late-spiral galaxy M33. This system is the nearest example of a dwarf spiral galaxy, which may have a unique role in the process of galaxy formation and evolution. The cold dark matter paradigm of galaxy formation envisions large spiral galaxies, such as the Milky Way, being formed from the merger and accretion of many smaller dwarf galaxies. The role that dwarf spiral galaxies play in this process is largely unclear. One of the goals of this thesis is to use the star cluster population of M33 to study its formation and evolution from its early stages to the present. The thesis presents a new comprehensive catalog of M33 star clusters, which includes magnitudes, colors, structural parameters, and several preliminary velocity measurements. Based on an analysis of these data, the thesis concludes that, among other things, the evolution of M33 has likely been influenced by its nearby massive neighbor M31.
Elucidating Organic Reaction Mechanisms using photo-CIDNP Spectroscopy, by Martin Goez. Parahydrogen Induced Polarization by Homogeneous Catalysis: Theory and Applications, by Kerstin Munnemann et al. Improving NMR and MRI Sensitivity with Parahydrogen, by R. Mewis & Simon Duckett. The Solid-state Photo-CIDNP Effect, by Jorg Matysik et al. Parahydrogen-induced Polarization in Heterogeneous Catalytic Processes, by Igor Koptyug et al. Dynamic Nuclear Polarization Enhanced NMR Spectroscopy, by U. Akbey & H. Oschkinat. Photo-CIDNP NMR Spectroscopy of Amino Acids and Proteins, by Lars T. Kuhn."
The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd. This book includes the following cutting-edge features: an introduction to the state-of-the-art single-particle localization theory an extensive discussion of relevant technical aspects of the localization theory a thorough comparison of the multi-particle model with its single-particle counterpart a self-contained rigorous derivation of both spectral and dynamical localization in the multi-particle tight-binding Anderson model. Required mathematical background for the book includes a knowledge of functional calculus, spectral theory (essentially reduced to the case of finite matrices) and basic probability theory. This is an excellent text for a year-long graduate course or seminar in mathematical physics. It also can serve as a standard reference for specialists.
High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their knowledge of this remarkable class of materials.
Physical techniques such as X-ray crystallography, IR spectroscopy and solution-phase NMR spectroscopy have played key roles in the development of supramolecular chemistry. In recent years other spectroscopic techniques have been applied, expanding the range of information obtainable. The most widely used technique is solid-state NMR spectroscopy but techniques such as neutron scattering and NQR spectroscopy can yield significant information. Computational approaches are now becoming powerful complementary methods to experimental techniques and this book reviews the application of these methods to supramolecular systems. The ten chapters provide up-to-date information on the applications of spectroscopic and computational techniques to a wide range of supramolecular systems: Solid State NMR Studies of Host-Guest Materials Infrared Studies of Zeolite Complexes NQR Studies of Inclusion Compounds Neutron Scattering Studies of Zeolite Complexes Solid State NMR Studies of Catalytic Reactions on Molecular Sieves Recent Advances in Computational Studies of Zeolites Theoretical Studies of Cyclodextrins and their Inclusion Complexes Computer Modelling of the Structures of Host-Guest Complexes Computational Studies of Clathrate Hydrates Ab initio Electronic Structure Calculations on Endohedral Complexes of the C60 Cluster. This timely book will prove to be of great value to supramolecular researchers who are familiar with the spectroscopic techniques but who wish to extend their knowledge of the computational methods (and vice versa), to supramolecular researchers working in allied areas whose work would benefit from applying spectroscopic and computational methods, and finally to workers just entering the fascinating area of supramolecular chemistry.
- __ * ___ __ * - __ e _e __ M-A-S-S S-P-GBP-C-T-R-O-M-GBP-T-R-Y in Morse code This volume collects descriptions of selected recent developments in state-of- the-art mass spectrometric methods and reflects the broad-based approaches that mass spectroscopists apply to a variety of important clinical and bio- medical problems. One chapter reviews current mass-spectrometric instrumen- tation and techniques, and other chapters describe the use of mass-spectro- metric methods for the analysis of diacylglycerylphospholipids; modifications to DNA molecules; the characterization of variant hemoglobins; and charac- terization of urinary nucleosides. The final chapter describes the new technique of combined microdialysis/mass spectrometry. This volume represents the collected efforts of several highly productive researchers who have developed new methods and instrumentation and have applied them to current research problems, such as lipid storage diseases, cancer, hemoglobinopathies, and brain neurochemistry. The chapters in Vol- umes 1 and 2 define the outlines of clinical and biomedical mass spectrometry and attest to the flexibility and creativity of mass spectroscopists and their interaction with biologic and clinical scientists. The authors in this volume are to be congratulated for their writing efforts, their scientific vigor and rigor, their intellectual contributions, and the ex- perimental details that are described in these chapters. I thank each author for collaborating with me on the production of this volume, and I hope these chapters will help the practitioners of, and the newcomers to, the field of mass spectrometry.
Evanescent waves play a growing role in many different areas such as guided optics, optical-fiber couplers, integrated optical elements, internal reflection spectroscopy, atom optics, dark-field microscopy, scanning tunneling optical microscopy, microaperture microscopy, and apertureless microscopies. This book describes the near field of an object through the role of the evanescent field in these areas of research. It is intended as a reference for scientists and as an introduction at the graduate level.
Describes the instruments and initial results of the Fast Imaging Solar Spectrograph (FISS) at the Big Bear Solar Observatory. This collection of papers describes the instrument and initial results obtained from the Fast Imaging Solar Spectrograph (FISS), one of the post-focus instruments of the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. The FISS primarily aims at investigating structures and dynamics of chromospheric features. This instrument is a dual-band Echelle spectrograph optimized for the simultaneous recording of the H I 656.3 nm band and the Ca II 854.2 nm band. The imaging is done with the fast raster scan realized by the linear motion of a two-mirror scanner, and its quality is determined by the performance of the adaptive optics of the telescope. These papers illustrate the capability of the early FISS observations in the study of chromospheric features. Since the imaging quality has been improved a lot with the advance of the adaptive optics, one can obtain much better data with the current FISS observations. This volume is aimed at graduate students and researchers working in the field of solar physics and space sciences. Originally published in Solar Physics, Vol. 288, Issue 1, 2013, and Vol. 289, Issue 11, 2014.
Although based on lectures given for graduate students and postgraduates starting in plasma physics, this concise introduction to the fundamental processes and tools is as well directed at established researchers who are newcomers to spectroscopy and seek quick access to the diagnostics of plasmas ranging from low- to high-density technical systems at low temperatures, as well as from low- to high-density hot plasmas. Basic ideas and fundamental concepts are introduced as well as typical instrumentation from the X-ray to the infrared spectral regions. Examples, techniques and methods illustrate the possibilities. This book directly addresses the experimentalist who actually has to carry out the experiments and their interpretation. For that reason about half of the book is devoted to experimental problems, the instrumentation, components, detectors and calibration.
This book presents written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkorperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The book presents, to some extent, the status of the field of solid-state physics in 2006 not only in Germany but also internationally.
The book develops a comprehensive understanding of the surface impedance of the oxide high-temperature superconductors in comparison with the conventional superconductor Nb3Sn. Linear and nonlinear microwave responses are treated separately, both in terms of models, theories or numerical approaches and in terms of experimental results. The theoretical treatment connects fundamental aspects of superconductivity to the specific high-frequency properties. The experimental data review the state of the art, as reported by many international groups. The book describes further the main features of appropriate preparation, handling, mounting, and refrigeration techniques, and finally discusses possible applications in passive and active microwave devices.
The book presents a comprehensive survey of the thermoballistic approach to charge carrier transport in semiconductors. This semi-classical approach, which the authors have developed over the past decade, bridges the gap between the opposing drift-diffusion and ballistic models of carrier transport. While incorporating basic features of the latter two models, the physical concept underlying the thermoballistic approach constitutes a novel, unifying scheme. It is based on the introduction of "ballistic configurations" arising from a random partitioning of the length of a semiconducting sample into ballistic transport intervals. Stochastic averaging of the ballistic carrier currents over the ballistic configurations results in a position-dependent thermoballistic current, which is the key element of the thermoballistic concept and forms the point of departure for the calculation of all relevant transport properties. In the book, the thermoballistic concept and its implementation are developed in great detail and specific examples of interest to current research in semiconductor physics and spintronics are worked out.
In this thesis Matthew Simpson reportstwo areas of work in gas ion spectroscopy, each investigation in itself worthy of a PhD. The first study uses tunable vacuum-ultraviolet radiation from a synchrotron to identify negative ions from twenty four photoexcited polyatomic molecules in the gas phase. From these experiments, Matthew collects a vast amount of data and summarises and reviews ion-pair formation from polyatomic molecules. The second study is on selected ion flow tube mass spectrometry. Matthew investigates the reactions of cations and anions with ethene, monofluoroethene, 1,1-difluoroethene and tetrafluoroethene. In this study Matthew tries to explain why certain products are formed preferentially over other products at a microscopic level of understanding. The data recorded in this thesis form the most comprehensive collection of information about anion formation and are the basis of a review and numerous articles in specialist journals.
One of the major problems associated with the disposal of chemical weapons is that the agents have degraded over time, some quite seriously. Detecting and identifying the products of this decomposition are necessary prerequisites to the safe, complete and environmentally benign destruction of stockpiled weapons. The book presents and discusses both basic and novel techniques in a variety of areas of analytical chemistry which are relevant to achieving the ultimate destruction of chemical weapons. Presentations address sample collection and preparation, mass spectrometry, chromatographic techniques, NMR, and air monitoring techniques. The work shows that analytical methods do exist to effectively support the destruction of chemical munitions. While further research is needed, the book provides an excellent baseline for further advances in the field.
Fluorescence spectroscopy and its applications to the physical and life sciences have evolved rapidly during the past decade. The increased interest in fluorescence appears to be due to advances in time resolution, methods of data analysis and improved instrumentation. With these advances, it is now practical to perform time-resolved measurements with enough resolution to compare the results with the structural and dynamic features of mac- molecules, to probe the structures of proteins, membranes, and nucleic acids, and to acquire two-dimensional microscopic images of chemical or protein distributions in cell cultures. Advances in laser and detector technology have also resulted in renewed interest in fluorescence for clinical and analytical chemistry. Because of these numerous developments and the rapid appearance of new methods, it has become difficult to remain current on the science of fluorescence and its many applications. Consequently, I have asked the experts in particular areas of fluorescence to summarize their knowledge and the current state of the art. This has resulted in the initial three volumes of Topics in Fluorescence Spectroscopy, which is intended to be an ongoing series which summarizes, in one location, the vast literature on fluorescence spectroscopy. These first three volumes are designed to serve as an advanced text. These volumes describe the more recent techniques and technologies (Volume 1), the principles governing fluorescence and the experimental observables (Volume 2), and applications in biochemistry and biophysics (Volume 3).
Reviews in Fluorescence 2010, the seventh volume of the book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of fluorescence and closely related disciplines. It summarizes the year's progress in fluorescence and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Reviews in Fluorescence offers an essential reference material for any lab working in the fluorescence field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of fluorescence will find it an invaluable resource. Key features: Accessible utility in a single volume reference. chapters authored by known leading figures in the fluorescence field, new volume publishes annually, comprehensive coverage of the year's hottest and emerging topics, each Reviews in Fluorescence volume is citable (ISI) and indexed. Reviews in Fluorescence 2010 topics include: Novel Metal-based Luminophores for Biological Imaging. hydration Dynamics of Probes and Peptides in Captivity, how does tobacco etch viral mRNA get translated? A fluorescence study of competition, stability and kinetics, synchronous Fluorescence Spectroscopy and Its Applications in Clinical Analysis and Food Safety Evaluation, quantitative molecular imaging in living cells via FLIM, a Multiparametric Imaging of Cellular Coenzymes for Monitoring Metabolic and Mitochondrial Activities, optimal Conditions for Live Cell Microscopy and Raster Image Correlation Spectroscopy (RICS).
Scientific research involving neutrons or synchrotron radiation is performed in large experimental installations at a few sites around the world. Taking full advantage of such techniques requires a wide range of specialized expertise not found in any university course. Therefore, there is a need for reference books and training courses to introduce young scientists to the underlying principles and methods. Neutron and X-Ray Spectroscopy delivers an up-to-date account of the principles and practice of inelastic and spectroscopic methods available at neutron and synchrotron sources, including recent developments. The chapters are based on a course of lectures and practicals (the HERCULES course at the European Synchrotron Radiation Facility) delivered to young scientists who require these methods in their professional careers. Each chapter, written by a leading specialist in the field, introduces the basic concepts of the technique and provides an overview of recent work. This volume, which focuses on spectroscopic techniques in synchrotron radiation and inelastic neutron scattering, will be a primary source of information for physicists, chemists and materials scientists who wish to acquire a basic understanding of these techniques and to discover the possibilities offered by them. Emphasizing the complementarity of the neutron and X-ray methods, this tutorial will also be invaluable to scientists already working in neighboring fields who seek to extend their knowledge.
This book covers different aspects of the physics of iron-based superconductors ranging from the theoretical, the numerical and computational to the experimental ones. It starts from the basic theory modeling many-body physics in Fe-superconductors and other multi-orbital materials and reaches up to the magnetic and Cooper pair fluctuations and nematic order. Finally, it offers a comprehensive overview of the most recent advancements in the experimental investigations of iron based superconductors.
Hydrogen exchange mass spectrometry is widely recognized for its ability to probe the structure and dynamics of proteins. The application of this technique is becoming widespread due to its versatility for providing structural information about challenging biological macromolecules such as antibodies, flexible proteins and glycoproteins. Although the technique has been around for 25 years, this is the first definitive book devoted entirely to the topic. Hydrogen Exchange Mass Spectrometry of Proteins: Fundamentals, Methods and Applications brings into one comprehensive volume the theory, instrumentation and applications of Hydrogen Exchange Mass Spectrometry (HX-MS) - a technique relevant to bioanalytical chemistry, protein science and pharmaceuticals. The book provides a solid foundation in the basics of the technique and data interpretation to inform readers of current research in the method, and provides illustrative examples of its use in bio- and pharmaceutical chemistry and biophysics In-depth chapters on the fundamental theory of hydrogen exchange, and tutorial chapters on measurement and data analysis provide the essential background for those ready to adopt HX-MS. Expert users may advance their current understanding through chapters on methods including membrane protein analysis, alternative proteases, millisecond hydrogen exchange, top-down mass spectrometry, histidine exchange and method validation. All readers can explore the diversity of HX-MS applications in areas such as ligand binding, membrane proteins, drug discovery, therapeutic protein formulation, biocomparability, and intrinsically disordered proteins.
Provides comprehensive coverage of the interpretation of LC MS MS mass spectra of 1300 drugs and pesticides * Provides a general discussion on the fragmentation of even-electron ions (protonated and deprotonated molecules) in both positive-ion and negative-ion modes * This is the reference book for the interpretation of MS MS mass spectra of small organic molecules * Covers related therapeutic classes of compounds such as drugs for cardiovascular diseases, psychotropic compounds, drugs of abuse and designer drugs, antimicrobials, among many others * Covers general fragmentation rule as well as specific fragmentation pathways for many chemical functional groups * Gives an introduction to MS technology, mass spectral terminology, information contained in mass spectra, and to the identification strategies used for different types of unknowns |
You may like...
NMR Spectroscopy in the Undergraduate…
David Soulsby, Laura J. Anna, …
Hardcover
R4,835
Discovery Miles 48 350
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,294
Discovery Miles 52 940
Collisional Effects on Molecular Spectra…
Jean-Michel Hartmann, Christian Boulet, …
Paperback
R4,963
Discovery Miles 49 630
Analytical Atomic Absorption…
Alfredo Sanz-Medel, Rosario Pereiro
Hardcover
R1,530
Discovery Miles 15 300
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,257
Discovery Miles 32 570
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, …
Hardcover
R4,020
Discovery Miles 40 200
Encyclopedia of Spectroscopy and…
John C. Lindon, George E. Tranter, …
Hardcover
R59,229
Discovery Miles 592 290
|