0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (1)
  • R250 - R500 (22)
  • R500+ (2,655)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General

Advanced Fluorescence Reporters in Chemistry and Biology III - Applications in Sensing and Imaging (Hardcover, Edition.):... Advanced Fluorescence Reporters in Chemistry and Biology III - Applications in Sensing and Imaging (Hardcover, Edition.)
Alexander P. Demchenko
R7,680 Discovery Miles 76 800 Ships in 18 - 22 working days

The key element of any fluorescence sensing or imaging technology is the fluorescence reporter, which transforms the information on molecular interactions and dynamics into measurable signals of fluorescence emission. This book, written by a team of frontline researchers, demonstrates the broad field of applications of fluorescence reporters, starting from nanoscopic properties of materials, such as self-assembled thin films, polymers and ionic liquids, through biological macromolecules and further to living cell, tissue and body imaging. Basic information on obtaining and interpreting experimental data is presented and recent progress in these practically important areas is highlighted. The book is addressed to a broad interdisciplinary audience.

Spectroscopic Properties of Inorganic and Organometallic Compounds - Volume 5 (Hardcover, Edition.): N.N. Greenwood Spectroscopic Properties of Inorganic and Organometallic Compounds - Volume 5 (Hardcover, Edition.)
N.N. Greenwood
R10,120 Discovery Miles 101 200 Ships in 18 - 22 working days

Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr

Energy-Level Control at Hybrid Inorganic/Organic Semiconductor Interfaces (Hardcover, 1st ed. 2017): Raphael Schlesinger Energy-Level Control at Hybrid Inorganic/Organic Semiconductor Interfaces (Hardcover, 1st ed. 2017)
Raphael Schlesinger
R3,589 R3,328 Discovery Miles 33 280 Save R261 (7%) Ships in 10 - 15 working days

This work investigates the energy-level alignment of hybrid inorganic/organic systems (HIOS) comprising ZnO as the major inorganic semiconductor. In addition to offering essential insights, the thesis demonstrates HIOS energy-level alignment tuning within an unprecedented energy range. (Sub)monolayers of organic molecular donors and acceptors are introduced as an interlayer to modify HIOS interface-energy levels. By studying numerous HIOS with varying properties, the author derives generally valid systematic insights into the fundamental processes at work. In addition to molecular pinning levels, he identifies adsorption-induced band bending and gap-state density of states as playing a crucial role in the interlayer-modified energy-level alignment, thus laying the foundation for rationally controlling HIOS interface electronic properties. The thesis also presents quantitative descriptions of many aspects of the processes, opening the door for innovative HIOS interfaces and for future applications of ZnO in electronic devices.

Multifunctional Gold Nanostars for Cancer Theranostics (Hardcover, 1st ed. 2018): Yang Liu Multifunctional Gold Nanostars for Cancer Theranostics (Hardcover, 1st ed. 2018)
Yang Liu
R3,280 Discovery Miles 32 800 Ships in 18 - 22 working days

This thesis presents the development of theranostic gold nanostars (GNS) for multimodality cancer imaging and therapy. Furthermore, it demonstrates that a novel two-pronged treatment, combining immune-checkpoint inhibition and GNS-mediated photothermal nanotherapy, can not only eradicate primary treated tumors but also trigger immune responses to treat distant untreated tumors in a mouse animal model. Cancer has become a significant threat to human health with more than eight million deaths each year, and novel methods for cancer management to improve patients' overall survival are urgently needed. The developed multifunctional GNS nanoprobe with tip-enhanced plasmonics in the near-infrared region can be combined with (1) surface-enhanced Raman spectroscopy (SERS), (2) two-photon photoluminescence (TPL), (3) X-ray computed tomography (CT), (4) magnetic resonance imaging (MRI), (5) positron emission tomography (PET), and (6) photothermal therapy (PTT) for cancer imaging and treatment. The ability of the GNS nanoprobe to detect submillimeter intracranial brain tumors was demonstrated using PET scan - a superior non-invasive imaging modality - in a mouse animal model. In addition, delayed rechallenge with repeated cancer cell injection in cured mice did not lead to new tumor formation, indicating generation of a memorized immune response to cancer. The biocompatible gold nanostars with superior capabilities for cancer imaging and treatment have great potential for translational medicine applications.

Measuring, Interpreting and Translating Electron Quasiparticle - Phonon Interactions on the Surfaces of the Topological... Measuring, Interpreting and Translating Electron Quasiparticle - Phonon Interactions on the Surfaces of the Topological Insulators Bismuth Selenide and Bismuth Telluride (Hardcover, 1st ed. 2016)
Colin Howard
R2,653 Discovery Miles 26 530 Ships in 18 - 22 working days

The thesis presents experimental and theoretical results about the surface dynamics and the surface Dirac fermion (DF) spectral function of the strong topological insulators Bi2Te3 and Bi2Se3. The experimental results reveal the presence of a strong Kohn anomaly in the measured surface phonon dispersion of a low-lying optical mode, and the absence of surface Rayleigh acoustic phonons. Fitting the experimental data to theoretical models employing phonon Matsubara functions allowed the extraction of the matrix elements of the coupling Hamiltonian and the modifications to the surface phonon propagator that are encoded in the phonon self-energy. This allowed, for the first time, calculation of phonon mode-specific DF coupling (q) from experimental data, with average coupling significantly higher than typical values for metals, underscoring the strong coupling between optical surface phonons and surface DFs in topological insulators. Finally, to connect to experimental results obtained from photoemission spectroscopies, an electronic (DF) Matsubara function was constructed using the determined electron-phonon matrix elements and the optical phonon dispersion. This allowed calculation of the DF spectral function and density of states, allowing for comparison with photoemission and scanning tunneling spectroscopies. The results set the necessary energy resolution and extraction methodology for calculating from the DF perspective.

Organic Electronics (Hardcover, 2010 ed.): Gregor Meller, Tibor Grasser Organic Electronics (Hardcover, 2010 ed.)
Gregor Meller, Tibor Grasser
R7,687 Discovery Miles 76 870 Ships in 18 - 22 working days

Dear Readers, Since the ground-breaking, Nobel-prize crowned work of Heeger, MacDiarmid, and Shirakawa on molecularly doped polymers and polymers with an alternating bonding structure at the end of the 1970s, the academic and industrial research on hydrocarbon-based semiconducting materials and devices has made encouraging progress. The strengths of semiconducting polymers are currently mainly unfolding in cheap and easily assembled thin ?lm transistors, light emitting diodes, and organic solar cells. The use of so-called "plastic chips" ranges from lightweight, portable devices over large-area applications to gadgets demanding a degree of mechanical ?exibility, which would overstress conventionaldevices based on inorganic,perfect crystals. The ?eld of organic electronics has evolved quite dynamically during the last few years; thus consumer electronics based on molecular semiconductors has gained suf?cient market attractiveness to be launched by the major manufacturers in the recent past. Nonetheless, the numerous challenges related to organic device physics and the physics of ordered and disordered molecular solids are still the subjects of a cont- uing lively debate. The future of organic microelectronics will unavoidably lead to new devi- physical insights and hence to novel compounds and device architectures of - hanced complexity. Thus, the early evolution of predictive models and precise, computationally effective simulation tools for computer-aided analysis and design of promising device prototypes will be of crucial importance.

Spectroscopic Properties of Inorganic and Organometallic Compounds - Volume 4 (Hardcover, Edition.): N.N. Greenwood Spectroscopic Properties of Inorganic and Organometallic Compounds - Volume 4 (Hardcover, Edition.)
N.N. Greenwood
R10,111 Discovery Miles 101 110 Ships in 18 - 22 working days

Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr

Mass Spectrometry - Volume 1 (Hardcover, Edition.): D.H. Williams Mass Spectrometry - Volume 1 (Hardcover, Edition.)
D.H. Williams
R10,019 Discovery Miles 100 190 Ships in 18 - 22 working days

Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.

Lipid-mediated Protein Signaling (Hardcover, 2013 ed.): Daniel G S Capelluto Lipid-mediated Protein Signaling (Hardcover, 2013 ed.)
Daniel G S Capelluto
R5,066 R4,745 Discovery Miles 47 450 Save R321 (6%) Ships in 10 - 15 working days

This book provides the most updated information of how membrane lipids mediate protein signaling from studies carried out in animal and plant cells. Also, there are some chapters that go beyond and expand these studies of protein-lipid interactions at the structural level. The book begins with a literature review from investigations associated to sphingolipids, followed by studies that describe the role of phosphoinositides in signaling and closing with the function of other key lipids in signaling at the plasma membrane and intracellular organelles.

Spectroscopic Properties of Inorganic and Organometallic Compounds - Volume 3 (Hardcover, Edition.): N.N. Greenwood Spectroscopic Properties of Inorganic and Organometallic Compounds - Volume 3 (Hardcover, Edition.)
N.N. Greenwood
R10,093 Discovery Miles 100 930 Ships in 18 - 22 working days

Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr

Protein Fluorescence (Hardcover, 2000 ed.): Joseph R. Lacowicz Protein Fluorescence (Hardcover, 2000 ed.)
Joseph R. Lacowicz
R4,190 Discovery Miles 41 900 Ships in 18 - 22 working days

The intrinsic or natural fluorescence of proteins is perhaps the most complex area of biochemical fluorescence. Fortunately the fluorescent amino acids, phenylalanine, tyrosine and tryptophan are relatively rare in proteins. Tr- tophan is the dominant intrinsic fluorophore and is present at about one mole % in protein. As a result most proteins contain several tryptophan residues and even more tyrosine residues. The emission of each residue is affected by several excited state processes including spectral relaxation, proton loss for tyrosine, rotational motions and the presence of nearby quenching groups on the protein. Additionally, the tyrosine and tryptophan residues can interact with each other by resonance energy transfer (RET) decreasing the tyrosine emission. In this sense a protein is similar to a three-particle or mul- particle problem in quantum mechanics where the interaction between particles precludes an exact description of the system. In comparison, it has been easier to interpret the fluorescence data from labeled proteins because the fluorophore density and locations could be controlled so the probes did not interact with each other. From the origins of biochemical fluorescence in the 1950s with Prof- sor G. Weber until the mid-1980s, intrinsic protein fluorescence was more qualitative than quantitative. An early report in 1976 by A. Grindvald and I. Z. Steinberg described protein intensity decays to be multi-exponential. Attempts to resolve these decays into the contributions of individual tryp- phan residues were mostly unsuccessful due to the difficulties in resolving closely spaced lifetimes.

Reviews in Fluorescence 2006 (Hardcover, New edition): Chris D. Geddes, Joseph R. Lakowicz Reviews in Fluorescence 2006 (Hardcover, New edition)
Chris D. Geddes, Joseph R. Lakowicz
R5,284 Discovery Miles 52 840 Ships in 18 - 22 working days

This is the third volume in the Reviews in Fluorescence series. To date, two volumes have been both published and well received by the scientific community. Several book reviews have also favorably described the series as an "excellent compilation of material which is well balanced from authors in both the US and Europe". Of particular mention we note the recent book review in JACS by Gary Baker, Los Alamos. In this 3rd volume we continue the tradition of publishing leading edge and timely articles from authors around the world. We hope you find this volume as useful as past volumes, which promises to be just as diverse with regard to content. Finally, in closing, we would like to thank Dr Kadir Asian for the typesetting of the entire volume and our counterparts at Springer, New York, for its timely publication. Professor Chris D. Geddes Professor Joseph R. Lakowicz August 20*^ 2005.

Spectroscopic Properties of Inorganic and Organometallic Compounds - Volume 2 (Hardcover, Edition.): N.N. Greenwood Spectroscopic Properties of Inorganic and Organometallic Compounds - Volume 2 (Hardcover, Edition.)
N.N. Greenwood
R10,094 Discovery Miles 100 940 Ships in 18 - 22 working days

Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr

Quantitative Proteomics by Mass Spectrometry (Hardcover, 2nd ed. 2016): Salvatore Sechi Quantitative Proteomics by Mass Spectrometry (Hardcover, 2nd ed. 2016)
Salvatore Sechi
R4,328 R3,528 Discovery Miles 35 280 Save R800 (18%) Ships in 10 - 15 working days

This volume describes prominent methodologies developed by laboratories that have been leading the field of quantitative proteomics by mass spectrometry. The procedures for performing the experiments are described in an easy-to-understand manner with many technical details that usually are not reported in typical research articles. This second edition of Quantitative Proteomics by Mass Spectrometry provides a broad perspective of the methodologies used for quantifying proteins and post-translational modifications in different types of biomedical specimens. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and thorough, Quantitative Proteomics by Mass Spectrometry, Second Edition is a valuable resource to help researchers understand and learn about the latest tools used in the study of quantitative proteomics by mass spectrometry.

Using Mass Spectrometry for Biochemical Studies on Enzymatic Domains from Polyketide Synthases (Hardcover, 1st ed. 2016):... Using Mass Spectrometry for Biochemical Studies on Enzymatic Domains from Polyketide Synthases (Hardcover, 1st ed. 2016)
Matthew Jenner
R3,290 Discovery Miles 32 900 Ships in 10 - 15 working days

This thesis reports studies on the substrate specificity of crucial ketosynthase (KS) domains from trans-AT Polyketide Synthases (PKSs). Using a combination of electrospray ionisation-mass spectrometry (ESI-MS) and simple N-acetyl cysteamine (SNAC) substrate mimics, the specificity of a range of KS domains from the bacillaene and psymberin PKSs have been succsessfully studied with regard to the initial acylation step of KS-catalysis. In addition, the ability to alter the substrate tolerance of KS domains by simple point mutations in the active site has been demonstrated. A series of acyl-ACPs have been synthesised using a novel methodology and employed to probe the substrate specificity of both KS domains and the previously uncharcterised acyl hydrolase domain, PedC. KS-catalysed chain elongation reactions have also been conducted and monitored by ESI-MS/MS. All KS domains studied exhibited higher substrate specificity at the elongation step than in the preceeding acylation step. Furthermore, a mechanism of reversible acylation is proposed using the PsyA ACP1-KS1 di-domain. The findings in this thesis provide important insights into mechanisms of KS specificity and show that mutagenesis can be used to expand the repertoire of acceptable substrates for future PKS engineering.

Experimental Mass Spectrometry (Hardcover, 1994 ed.): David H Russell Experimental Mass Spectrometry (Hardcover, 1994 ed.)
David H Russell
R5,318 Discovery Miles 53 180 Ships in 18 - 22 working days

Mass spectrometry underwent dramatic changes during the decade of the 1980s. Fast atom bombardment (F AB) ionization, developed by Barber and coworkers, made it possible for all mass spectrometry laboratories to analyze polar, highly functionalized organic molecules, and in some cases ionic, inorganic, and organometallic compounds. The emphasis of much of this work was on molecular weight determination. Parallel with the development of ionization methods (molecular weight mass spectrometry) for polar biological molecules, the increased mass range of sector and quadrupole mass spectrometers and the development of new instruments for tandem mass spectrometry fostered a new era in structural mass spectrometry. It was during this same period that new instrument technologies, such as Fourier transform ion cyclotron resonance, radio frequency quadrupole ion trap, and new types of time-of-flight mass spectrometers, began to emerge as useful analytical instruments. In addi tion, laser methods useful for both sample ionization and activation became commonplace in almost every analytical mass spectrometry laboratory. In the last 5 years, there has been explosive growth in the area of biological mass spectrometry. Such ionization methods as electrospray and matrix-assisted laser desorption ionization (MALDI) have opened new frontiers for both molecular weight and structural mass spectrometry, with mass spectrometry being used for analysis at the picomole and even femto mole levels. In ideal cases, subfemtomole sample levels can be successfully analyzed. Sample-handling methods are now the limiting factor in analyz ing trace amounts of biological samples."

Strongly Correlated Systems - Theoretical Methods (Hardcover, 2012): Adolfo Avella, Ferdinando Mancini Strongly Correlated Systems - Theoretical Methods (Hardcover, 2012)
Adolfo Avella, Ferdinando Mancini
R5,307 Discovery Miles 53 070 Ships in 10 - 15 working days

The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.

The Formation and Evolution of M33 as Revealed by Its Star Clusters (Hardcover, 2013 ed.): Izaskun San Roman The Formation and Evolution of M33 as Revealed by Its Star Clusters (Hardcover, 2013 ed.)
Izaskun San Roman
R3,204 Discovery Miles 32 040 Ships in 18 - 22 working days

This thesis represents the first wide-field photometric and spectroscopic survey of star clusters in the nearby late-spiral galaxy M33. This system is the nearest example of a dwarf spiral galaxy, which may have a unique role in the process of galaxy formation and evolution. The cold dark matter paradigm of galaxy formation envisions large spiral galaxies, such as the Milky Way, being formed from the merger and accretion of many smaller dwarf galaxies. The role that dwarf spiral galaxies play in this process is largely unclear. One of the goals of this thesis is to use the star cluster population of M33 to study its formation and evolution from its early stages to the present. The thesis presents a new comprehensive catalog of M33 star clusters, which includes magnitudes, colors, structural parameters, and several preliminary velocity measurements. Based on an analysis of these data, the thesis concludes that, among other things, the evolution of M33 has likely been influenced by its nearby massive neighbor M31.

Hyperpolarization Methods in NMR Spectroscopy (Hardcover, 2013 ed.): Lars T. Kuhn Hyperpolarization Methods in NMR Spectroscopy (Hardcover, 2013 ed.)
Lars T. Kuhn
R6,143 Discovery Miles 61 430 Ships in 18 - 22 working days

Elucidating Organic Reaction Mechanisms using photo-CIDNP Spectroscopy, by Martin Goez. Parahydrogen Induced Polarization by Homogeneous Catalysis: Theory and Applications, by Kerstin Munnemann et al. Improving NMR and MRI Sensitivity with Parahydrogen, by R. Mewis & Simon Duckett. The Solid-state Photo-CIDNP Effect, by Jorg Matysik et al. Parahydrogen-induced Polarization in Heterogeneous Catalytic Processes, by Igor Koptyug et al. Dynamic Nuclear Polarization Enhanced NMR Spectroscopy, by U. Akbey & H. Oschkinat. Photo-CIDNP NMR Spectroscopy of Amino Acids and Proteins, by Lars T. Kuhn."

Multi-scale Analysis for Random Quantum Systems with Interaction (Hardcover, 2014 ed.): Victor Chulaevsky, Yuri Suhov Multi-scale Analysis for Random Quantum Systems with Interaction (Hardcover, 2014 ed.)
Victor Chulaevsky, Yuri Suhov
R3,028 Discovery Miles 30 280 Ships in 10 - 15 working days

The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd. This book includes the following cutting-edge features: an introduction to the state-of-the-art single-particle localization theory an extensive discussion of relevant technical aspects of the localization theory a thorough comparison of the multi-particle model with its single-particle counterpart a self-contained rigorous derivation of both spectral and dynamical localization in the multi-particle tight-binding Anderson model. Required mathematical background for the book includes a knowledge of functional calculus, spectral theory (essentially reduced to the case of finite matrices) and basic probability theory. This is an excellent text for a year-long graduate course or seminar in mathematical physics. It also can serve as a standard reference for specialists.

High-Temperature Cuprate Superconductors - Experiment, Theory, and Applications (Hardcover, 2010 ed.): Nikolay Plakida High-Temperature Cuprate Superconductors - Experiment, Theory, and Applications (Hardcover, 2010 ed.)
Nikolay Plakida
R5,266 Discovery Miles 52 660 Ships in 18 - 22 working days

High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their knowledge of this remarkable class of materials.

Spectroscopic and Computational Studies of Supramolecular Systems (Hardcover, 1992 ed.): J.E. Davies Spectroscopic and Computational Studies of Supramolecular Systems (Hardcover, 1992 ed.)
J.E. Davies
R4,046 Discovery Miles 40 460 Ships in 18 - 22 working days

Physical techniques such as X-ray crystallography, IR spectroscopy and solution-phase NMR spectroscopy have played key roles in the development of supramolecular chemistry. In recent years other spectroscopic techniques have been applied, expanding the range of information obtainable. The most widely used technique is solid-state NMR spectroscopy but techniques such as neutron scattering and NQR spectroscopy can yield significant information. Computational approaches are now becoming powerful complementary methods to experimental techniques and this book reviews the application of these methods to supramolecular systems. The ten chapters provide up-to-date information on the applications of spectroscopic and computational techniques to a wide range of supramolecular systems: Solid State NMR Studies of Host-Guest Materials Infrared Studies of Zeolite Complexes NQR Studies of Inclusion Compounds Neutron Scattering Studies of Zeolite Complexes Solid State NMR Studies of Catalytic Reactions on Molecular Sieves Recent Advances in Computational Studies of Zeolites Theoretical Studies of Cyclodextrins and their Inclusion Complexes Computer Modelling of the Structures of Host-Guest Complexes Computational Studies of Clathrate Hydrates Ab initio Electronic Structure Calculations on Endohedral Complexes of the C60 Cluster. This timely book will prove to be of great value to supramolecular researchers who are familiar with the spectroscopic techniques but who wish to extend their knowledge of the computational methods (and vice versa), to supramolecular researchers working in allied areas whose work would benefit from applying spectroscopic and computational methods, and finally to workers just entering the fascinating area of supramolecular chemistry.

Mass Spectrometry - Clinical and Biomedical Applications (Hardcover, 1994 ed.): Dominic M. Desiderio Mass Spectrometry - Clinical and Biomedical Applications (Hardcover, 1994 ed.)
Dominic M. Desiderio
R4,161 Discovery Miles 41 610 Ships in 18 - 22 working days

- __ * ___ __ * - __ e _e __ M-A-S-S S-P-GBP-C-T-R-O-M-GBP-T-R-Y in Morse code This volume collects descriptions of selected recent developments in state-of- the-art mass spectrometric methods and reflects the broad-based approaches that mass spectroscopists apply to a variety of important clinical and bio- medical problems. One chapter reviews current mass-spectrometric instrumen- tation and techniques, and other chapters describe the use of mass-spectro- metric methods for the analysis of diacylglycerylphospholipids; modifications to DNA molecules; the characterization of variant hemoglobins; and charac- terization of urinary nucleosides. The final chapter describes the new technique of combined microdialysis/mass spectrometry. This volume represents the collected efforts of several highly productive researchers who have developed new methods and instrumentation and have applied them to current research problems, such as lipid storage diseases, cancer, hemoglobinopathies, and brain neurochemistry. The chapters in Vol- umes 1 and 2 define the outlines of clinical and biomedical mass spectrometry and attest to the flexibility and creativity of mass spectroscopists and their interaction with biologic and clinical scientists. The authors in this volume are to be congratulated for their writing efforts, their scientific vigor and rigor, their intellectual contributions, and the ex- perimental details that are described in these chapters. I thank each author for collaborating with me on the production of this volume, and I hope these chapters will help the practitioners of, and the newcomers to, the field of mass spectrometry.

Evanescent Waves - From Newtonian Optics to Atomic Optics (Hardcover, 2001 ed.): Frederique De Fornel Evanescent Waves - From Newtonian Optics to Atomic Optics (Hardcover, 2001 ed.)
Frederique De Fornel
R2,804 Discovery Miles 28 040 Ships in 18 - 22 working days

Evanescent waves play a growing role in many different areas such as guided optics, optical-fiber couplers, integrated optical elements, internal reflection spectroscopy, atom optics, dark-field microscopy, scanning tunneling optical microscopy, microaperture microscopy, and apertureless microscopies. This book describes the near field of an object through the role of the evanescent field in these areas of research. It is intended as a reference for scientists and as an introduction at the graduate level.

Initial Results from the Fast Imaging Solar Spectrograph (FISS) (Hardcover, 2015 ed.): Jongchul Chae Initial Results from the Fast Imaging Solar Spectrograph (FISS) (Hardcover, 2015 ed.)
Jongchul Chae
R3,240 Discovery Miles 32 400 Ships in 18 - 22 working days

Describes the instruments and initial results of the Fast Imaging Solar Spectrograph (FISS) at the Big Bear Solar Observatory. This collection of papers describes the instrument and initial results obtained from the Fast Imaging Solar Spectrograph (FISS), one of the post-focus instruments of the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. The FISS primarily aims at investigating structures and dynamics of chromospheric features. This instrument is a dual-band Echelle spectrograph optimized for the simultaneous recording of the H I 656.3 nm band and the Ca II 854.2 nm band. The imaging is done with the fast raster scan realized by the linear motion of a two-mirror scanner, and its quality is determined by the performance of the adaptive optics of the telescope. These papers illustrate the capability of the early FISS observations in the study of chromospheric features. Since the imaging quality has been improved a lot with the advance of the adaptive optics, one can obtain much better data with the current FISS observations. This volume is aimed at graduate students and researchers working in the field of solar physics and space sciences. Originally published in Solar Physics, Vol. 288, Issue 1, 2013, and Vol. 289, Issue 11, 2014.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Encyclopedia of Spectroscopy and…
John C. Lindon, George E. Tranter, … Hardcover R59,229 Discovery Miles 592 290
Pyrolysis of Organic Molecules…
Serban C. Moldoveanu Paperback R7,554 R6,966 Discovery Miles 69 660
Annual Reports on NMR Spectroscopy…
Graham A. Webb Hardcover R5,469 Discovery Miles 54 690
Annual Reports on NMR Spectroscopy…
William S Price Hardcover R5,467 Discovery Miles 54 670
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft Hardcover R5,294 Discovery Miles 52 940
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, … Hardcover R4,020 Discovery Miles 40 200
UV-Visible Spectrophotometry of Waters…
Olivier Thomas, Christopher Burgess Paperback R5,195 Discovery Miles 51 950
Spectra of Atoms and Molecules
Peter F Bernath Hardcover R3,784 Discovery Miles 37 840
Internal Photoemission Spectroscopy…
Valeri V Afanas'ev Hardcover R3,206 Discovery Miles 32 060
Annual Reports on NMR Spectroscopy…
Graham A. Webb Hardcover R5,487 Discovery Miles 54 870

 

Partners