![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
This thesis demonstrates that an ultralow temperature refrigeration technique called "demagnetisation refrigeration" can be miniaturised and incorporated onto millimeter-sized chips to cool nanoelectronic circuits, devices and materials. Until recently, the lowest temperature ever reached in such systems was around 4 millikelvin. Here, a temperature of 1.2mK is reported in a nanoelectronic device. The thesis introduces the idea that on-chip demagnetization refrigeration can be used to cool a wide variety of nanostructures and devices to microkelvin temperatures. This brings the exciting possibility of discovering new physics, such as exotic electronic phases, in an unexplored regime and the potential to improve the performance of existing applications, including solid-state quantum technologies. Since the first demonstration of on-chip demagnetization refrigeration, described here, the technique has been taken up by other research groups around the world. The lowest on-chip temperature is currently 0.4mK. Work is now underway to adapt the technique to cool other materials and devices, ultimately leading to a platform to study nanoscale materials, devices and circuits at microkelvin temperatures.
This book offers historical and state-of-the-art molecular spectroscopy methods and applications in dynamic compression science, aimed at the upcoming generation in physical sciences involved in studies of materials at extremes. It begins with addressing the motivation for probing shock compressed molecular materials with spectroscopy and then reviews historical developments and the basics of the various spectroscopic methods that have been utilized. Introductory chapters are devoted to fundamentals of molecular spectroscopy, overviews of dynamic compression technologies, and diagnostics used to quantify the shock compression state during spectroscopy experiments. Subsequent chapters describe all the molecular spectroscopic methods used in shock compression research to date, including theory, experimental details for application to shocked materials, and difficulties that can be encountered. Each of these chapters also includes a section comparing static compression results. The last chapter offers an outlook for the future, which leads the next-generation readers to tackling persistent problems.
The 39th Denver Conference on Applications of X-ray Analysis was held July 31-August 4, 1995, at the Sheraton Hotel, Colorado Springs, Colorado. The year 1995 was a special year for the X-ray analysis community, since it represented the 100th anniversary ofthe discovery ofX-rays by Wilhelm Roentgen. In commemoration of this event, the Plenary Session of the conference was entitled "THE ROENTGEN COMMEMORATIVE SESSION:1895-1995, "100 YEARS OF PROGRESS IN X-RA Y SCIENCE AND APPLICATIONS". It is interesting to note that while we celebrate 100 years ofthe use ofX-ray techniques in general, and about 80 years ofX-ray diffraction and spectroscopy in particular, the Denver X-ray Conference has been in place for about half ofthat time period! Like the X-ray methods it represents, the Denver Conference on Applications ofX-ray Analysis has grown and matured, has survived the rigors oftime, and today, provides the worlds' best annual forum for the exchange of experiences and developments in the various fields ofX-ray analysis. Imagine, when the Denver Conference started in 1951, there were no personal computer- in fact, there were no computers, period! There was no SEM, no microprobe, there were no Si(Li) detectors, no transistors, no synchrotrons, Hugo Rietveld was a child, and many members who regularly attend Denver Meetings today, weren't even born yet! As I write this foreword, a copy of volurne 1 of Advances in X-ray Analysis lays in front of me on my desk.
The unique properties of ferromagnetic resonance (FMR) in magnetodielectric solids are widely used to create highly efficient analog information processing devices in the microwave range. Such devices include filters, delay lines, phase shifters, non-reciprocal and non-linear devices, and others. This book examines magnetic resonance and ferromagnetic resonance under a wide variety of conditions to study physical properties of magnetodielectric materials. The authors explore the properties in various mediums that significantly complicate magnetic resonance and provide a summary of related advances obtained during the last two decades. It also covers the emergence of new branches of the spectrum and anomalous dependencies on the magnetic field. Key Features: Reviews basic principles of the science of crystallographic symmetry and anisotropic solid-state properties Addresses the inhomogeneous nature of the distribution of the magnetization in the material being studied Explains the mathematic methods used in the calculation of anisotropic solids of a solid Provides the reader with a path to substitute electromagnetic waves when magnetostatic apparatus prove insufficient
This volume covers a broad range of topics focusing on atoms, molecules, and clusters interacting in intense laser field, laser induced filamentation, and laser plasma interaction and application. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.
Micro-X-ray fluorescence offers the possibility for a position- sensitive and non-destructive analysis that can be used for the analysis of non-homogeneous materials and layer systems. This analytical technique has shown a dynamic development in the last 15 years and is used for the analysis of small particles, inclusions, of elemental distributions for a wide range of different applications both in research and quality control. The first experiments were performed on synchrotrons but there is a requirement for laboratory instruments which offers a fast and immediate access for analytical results. The book discuss the main components of a -XRF instrument and the different measurement modes, it gives an overview about the various instruments types, considers the special requirements for quantification of non-homogeneous materials and presents a wide range of application for single point and multi-point analysis as well as for distribution analysis in one, two and three dimensions.
"...a comprehensive and well written book, which...will be useful reading for both researchers entering the field and experienced specialists looking for new ideas....a valuable and long-lasting contribution to experimental mechanics." - Stepan Lomov, KU Leuven This expert volume, an enhanced Habilitation thesis by the head of the Materials Testing Research Group at the University of Augsburg, provides detailed coverage of a range of inspection methods for insitu characterization of fiber-reinforced composites. The failure behavior of fiber reinforced composites is a complex evolution of microscopic damage phenomena. Beyond the use of classical testing methods, the ability to monitor the progression of damage insitu offers new ways to interpret the materials failure modes. Methods covered include digital image correlation, acoustic emission, electromagnetic emission, computed tomography, thermography, shearography, and promising method combinations. For each method, the discussion includes operational principles and practical applications for quality control as well as thoughtful assessment of the method's strengths and weakness so that the reader is equipped to decide which method or methods are most appropriate in a given situation. The book includes extensive appendices covering common experimental parameters influencing comparability of acoustic emission measurements; materials properties for modeling; and an overview of terms and abbreviations.
The contributors to this manual are uniformly from those labora- ries routinely using microwave technology to facilitate their processing methods in the various fields of microscopy. The methods and results these authors describe are the tangible evidence that microwaves can be used routinely as the basis for improved sample processing for micr- copy applications. These applications include complete sample proce- ing protocols for light and electron microscopy, decalcification, and immunocytochemistry. The overall time savings, ease of use, and qu- ity of results serve as justification for using microwaves in the labo- tory. The question as to whether there is a "microwave effect" is alluded to, but not discussed in any great detail. When the term microwave technology is used, it is generic and intended to mean equipment designed for laboratory versus household use. Microwave Techniques and Protocols is designed for anyone with a background and experience in sample processing for immunocytoch- istry, decalcification, light microscopy, or electron microscopy, and clearly demonstrates that microwave technology has a place in today's laboratory. Richard T. Giberson, Richard S. Demaree Jr., REFERENCES Giberson, R. T. Demaree, R. S., and (1995) Microwave fixation: understa- ing the variables to achieve rapid reproducible results. Microsc Res Tech 32:246-254. Giberson, R. T., Demaree, R. S., Jr., and Nordhausen, R. W. (1997) Four-hour processing of clinical/diagnostic specimens for electron microscopy using microwave technique. J Vet Diagn Invest 9:61-67. Jr. VhD Ms vi Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Abstract This chapter lays the foundation for the work presented in latter chapters. The potential of 60 GHz frequency bands for high data rate wireless transfer is discussed and promising applications are enlisted. Furthermore, the challenges related to 60 GHz IC design are presented and the chapter concludes with an outline of the book. Keywords Wireless communication 60 GHz Millimeter wave integrated circuit design Phase-locked loop CMOS Communication technology has revolutionized our way of living over the last century. Since Marconi's transatlantic wireless experiment in 1901, there has been tremendous growth in wireless communication evolving from spark-gap telegraphy to today's mobile phones equipped with Internet access and multimedia capabilities. The omnipresence of wireless communication can be observed in widespread use of cellular telephony, short-range communication through wireless local area networks and personal area networks, wireless sensors and many others. The frequency spectrum from 1 to 6 GHz accommodates the vast majority of current wireless standards and applications. Coupled with the availability of low cost radio frequency (RF) components and mature integrated circuit (IC) techn- ogies, rapid expansion and implementation of these systems is witnessed. The downside of this expansion is the resulting scarcity of available bandwidth and allowable transmit powers. In addition, stringent limitations on spectrum and energy emissions have been enforced by regulatory bodies to avoid interference between different wireless systems.
Volumes in the Proven Synthetic Methods Series address the concerns many chemists have regarding irreproducibility of synthetic protocols, lack of identification and characterization data for new compounds, and inflated yields reported in chemical communications-trends that have recently become a serious problem. Exploring carbohydrate chemistry from both the academic and industrial points of view, this unique resource brings together useful information into one convenient reference. The series is unique among other synthetic literature in the carbohydrate field in that, to ensure reproducibility, an independent checker has verified the experimental parts involved by repeating the protocols or using the methods. Featuring contributions from world-renowned experts and overseen by a highly respected series editor, this latest volume compiles reliable protocols for the preparation of intermediates for carbohydrate synthesis or other uses in the glycosciences. Key Features: Explains reliable and tested protocols for the preparation of intermediates for carbohydrate synthesis Offers a unique resource in glycosciences, compiling useful information in one reference Presents protocols that are of wide use to a broad range of readers in the carbohydrate field and the life sciences, including undergraduates taking carbohydrate workshops Explores synthetic carbohydrate chemistry from both the academic and industrial points of view Guarantees the reader a good, clean, reproducible experiment
This book discusses the theoretical foundations of the structural modeling method applied to metamaterials. This method takes into account the parameters of the crystal lattice, the size of the medium particles, as well as their shape and constants of force interactions between them. It provides mathematical models of metamaterials that offer insights into the qualitative influence of the local structure on the effective elastic moduli of the considered medium and into performing theoretical estimations of these quantities. This book is useful for researchers working in the fields of solid mechanics, physical acoustics, and condensed matter physics, as well as for graduate and postgraduate students studying mathematical modeling methods.
The book presents recent developments in the field of composites, investigated by Broadband Dielectric Spectroscopy (BDS) and sheds a special focus on nanocomposites. This volume compares the results obtained by BDS with data from other methods like hyphenated calorimetry, dynamical-mechanical spectroscopy, NMR spectroscopy and neutron scattering. The addressed systems range from all kinds of model systems, such as polymers filled with spherical silica particles, advanced materials such as polymers with molecular stickers or hyperbranched polymer-based matrices to industrially significant systems, like epoxy-based materials. The book offers an excellent insight to a valuable application of dielectric spectroscopy and it is a helpful guide for every scientist who wants to study dynamics in composite materials.
The book covers in particular state-of-the-art scientific research about product quality control and related health and environmental safety topics, including human, animal and plant safety assurance issues. These conference proceedings provide contemporary information on the general theoretical, metrological and practical issues of the production and application of reference materials. Reference materials play an integral role in physical, chemical and related type of measurements, ensuring their uniformity, comparability and the validity of quantitative analysis as well as, as a result, the objectivity of decisions concerning the elimination of technical barriers in commercial and economic, scientific and technical and other spheres of cooperation. The book is intended for researchers and practitioners in the field of chemistry, metrologists, technical physics, as well as for specialists in analytical laboratories, or working for companies and organizations involved in the production, distribution and use of reference materials.
The book gives an overview about all relevant electrochemical and spectroscopic methods used in corrosion research. Besides the correct use and interpretation, the methods are correlated with industrial test methods for organic coatings and conversion layers.
Long proven as an analytical tool of uncommon accuracy and utility, particle-induced X-ray emission has enjoyed a solid, if narrow, reputation in the area of chemical analysis. Capable of detecting elemental concentrations down to parts per million, PIXE is now a standard component of the analytical arsenal of the nuclear physics laboratory. Yet in wider avenues of chemical research, PIXE technology is still relatively new and untested. An inside look at the nuts and bolts of PIXE from specialists who've refined the technique in biomedicine, atmospheric science, geology, and art and archaeology, this comprehensive introduction to PIXE reveals its conceptual foundation and unique methodology as well as its, as yet, enormous untapped potential as a primary analytical tool. Particle-Induced X-Ray Emission Spectrometry (PIXE) offers professionals and students a practical, user-based look at the many facets and current uses of PIXE for multielemental analysis while providing a stimulus for creative, insightful investigation. Beginning with a brief history of PIXE, the book then introduces the reader to the conceptual basics central to understanding and using PIXE. It details the hardware and methodology that make up PIXE, examining its instrumentation, characteristics of x-ray spectroscopy, standardization of quantitative analysis, the accuracy of PIXE analysis, and its limits of detection. The technique of focusing proton beams to micron dimensions with the nuclear microprobe is thoroughly detailed, with practical advice on what pitfalls to avoid, and clear illustrations of its present uses in biomedicine, materials science, archaeology, and earth science. The following chapters form a comprehensive catalog of the cutting-edge uses of PIXE in a host of fields, shedding light on the technical specifics unique to each area of research as well as the intrinsic versatility of PIXE. A discussion of biological and medical applications includes a look at sample preparation, micro- and macro-PIXE, the use of PIXE with other methods, and data evaluation. PIXE's role in the compositional analysis of atmospheric aerosols is described, including a look at PIXE's future impact on global climate research. A look at PIXE's applications in the earth sciences contrasts the analysis of bulk material with grains and crystallites and highlights PIXE's practical uses in key areas of geologic research. PIXE's role in art and archaeology includes a fascinating and detailed exposition of its important role in the analysis of gem stones, pottery, paper-like materials, and pigments and paintings. Concluding with a detailed comparative analysis of PIXE with other current analytical methods, the book then provides a fascinating glimpse into the future prospects of PIXE. A must reference for the professional and novice in search of the basic hardware and methods behind the current state of the science, Particle-Induced X-Ray Emission Spectrometry (PIXE) is a premier guide to exploring the analytical possibilities open to this unique technology. The authoritative handbook to exploiting the full power and versatility of PIXE-- now and in the next century Respected for its practical accuracy and detection range of parts per million, particle-induced X-ray emission has enjoyed a secure place in the analytical arsenal of the nuclear physics laboratory. Yet, its undeniable analytical potential in other areas of science has scarcely been tapped. This unique reference, from PIXE specialists in biomedicine, atmospheric science, earth science, and art and archaeology, features a user-based look at PIXE's conceptual basics and methodology, with a view toward new and creative analytical work. Touching on every facet of PIXE technology, from basic instrumentation, specimens, the characteristics of X-ray spectroscopy, standardization of quantitative analysis, to the accuracy of PIXE analysis and its limits of detection, the book offers an unprecedented look at the newer uses of PIXE in such areas as: Applications of macro- and micro-PIXE in medicine, zoology, and botany Analysis of atmospheric aerosols Geological and extra-terrestrial material Analysis of gem stones, pottery, glass, and alloys As an exploratory tool for pigments and paintings and "paper-like" materials Complete with a comparative look contrasting PIXE with more conventional forms of analysis, this important reference is key to grasping the technique's practical specifics and exploiting its full analytical potential.
Spectroscopic ellipsometry has been applied to a wide variety of material and device characterizations in solar cell research fields. In particular, device performance analyses using exact optical constants of component layers and direct analyses of complex solar cell structures are unique features of advanced ellipsometry methods. This second volume of Spectroscopic Ellipsometry for Photovoltaics presents various applications of the ellipsometry technique for device analyses, including optical/recombination loss analyses, real-time control and on-line monitoring of solar cell structures, and large-area structural mapping. Furthermore, this book describes the optical constants of 148 solar cell component layers, covering a broad range of materials from semiconductor light absorbers (inorganic, organic and hybrid perovskite semiconductors) to transparent conductive oxides and metals. The tabulated and completely parameterized optical constants described in this book are the most current resource that is vital for device simulations and solar cell structural analyses.
In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of different aspects and scenarios. Macroscopic quantum electrodynamics is applied within the context of dispersion forces. In contrast to the normal-mode quantum electrodynamics traditionally used to study dispersion forces, the new approach allows to consider realistic material properties including absorption and is flexible enough to be applied to a broad range of geometries. Thus general properties of dispersion forces like their non-additivity and the relation between microscopic and macroscopic dispersion forces are discussed. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. In particular, nontrivial magnetic properties of the bodies, bodies of irregular shapes, the role of material absorption, and dynamical forces for excited atoms are discussed. This volume 2 deals especially with quantum electrodynamics, dispersion forces, Casimir forces, asymptotic power laws, quantum friction and universal scaling laws. The book gives both the specialist and those new to the field a thorough overview over recent results in the context of dispersion forces. It provides a toolbox for studying dispersion forces in various contexts.
This book is devoted to advanced materials and perspective sensors, which is one of the most important problems in nanotechnology and security. This book is useful for researchers, scientist and graduate students in the fields of solid state physics, nanotechnology and security.
The current volume in the series, "Vibrational Spectra and
Structure, "is a single topic volume on gas phase structural
parameters. The title of the volume, "Equilibrium Structural
Parameters," covers the two most common techniques for obtaining
gas phase structural parameters: microwave spectroscopy and the
electron diffraction technique. Since the quantum chemical method
provides equilibrium geometries, the volume is an attempt to
provide a connection between the experimental and theoretical
parameters. The book provides a review on molecular structure
determinations from spectroscopic data using scaled moments of
inertia. The limited number of molecules for which equilibrium
parameters have been obtained and the requirement of a large number
of microwave data needed to obtain the equilibrium structural
parameters is noted. Electron diffraction technique is reviewed,
along with a description of how this can incorporate structural
information from microwave spectroscopy, vibrational spectroscopy,
or theoretical calculations to improve the determination of the
structural parameters by electron diffraction studies. Also
discussed are the theory and methods of microwave spectroscopy,
describing in some detail ro and rs structures as well as rm
structures and corrections based on "ab initio" calculations. The
accuracy of the molecular geometry predictions by quantum chemical
methods is considered in some detail with data presented in graphic
rather than tabular form. This makes it possible to readily note
the difference in the parameters predicted at the various levels of
quantum mechanical calculations. The four authors have provided a
coherent description of the various structural parameters obtained
experimentally along with treatments needed to extract equilibrium
bond distances and angles.
Fluorescence reporter is the key element of any sensing or imaging technology. Its optimal choice and implementation is very important for increasing the sensitivity, precision, multiplexing power, and also the spectral, temporal, and spatial reso- tion in different methods of research and practical analysis. Therefore, design of ?uorescence reporters with advanced properties is one of the most important problems. In this volume, top experts in this ?eld provide advanced knowledge on the design and properties of ?uorescent dyes. Organic dyes were the ?rst ?uorescent materials used for analytical purposes, and we observe that they retain their leading positions against strong competition of new materials - conjugated polymers, semiconductor nanocrystals, and metal chelating complexes. Recently, molecular and cellular biology got a valuable tool of organic ?uorophores synt- sized by cell machinery and incorporated into green ?uorescent protein and its analogs. Demands of various ?uorescence techniques operating in spectral, anisotropy, and time domains require focused design of ?uorescence reporters well adapted to these techniques. Near-IR spectral range becomes more and more attractive for various applications, and new dyes emitting in this range are strongly requested. Two-photonic ?uorescence has become one of the major tools in bioimaging, and ?uorescence reporters well adapted to this technique are in urgent need. These problems cannot be solved without the knowledge of fundamental principles of dye design and of physical phenomena behind their ?uorescence response.
This volume represents 27 peer-reviewed papers presented at the ICOP 2013 symposium which will help conservators and curators recognise problems and interpret visual changes on paintings, which in turn give a more solid basis for decisions on the treatment of these paintings. The subject matter ranges from developments of paint technology, working methods of individual artists, through characterisation of paints and paint surfaces, paint degradation vs. long time stability, to observations of issues in collections, cleaning and other treatment issues as well as new conservation approaches.
This monograph offers an overview of rigorous results on fermionic topological insulators from the complex classes, namely, those without symmetries or with just a chiral symmetry. Particular focus is on the stability of the topological invariants in the presence of strong disorder, on the interplay between the bulk and boundary invariants and on their dependence on magnetic fields. The first part presents motivating examples and the conjectures put forward by the physics community, together with a brief review of the experimental achievements. The second part develops an operator algebraic approach for the study of disordered topological insulators. This leads naturally to the use of analytical tools from K-theory and non-commutative geometry, such as cyclic cohomology, quantized calculus with Fredholm modules and index pairings. New results include a generalized Streda formula and a proof of the delocalized nature of surface states in topological insulators with non-trivial invariants. The concluding chapter connects the invariants to measurable quantities and thus presents a refined physical characterization of the complex topological insulators. This book is intended for advanced students in mathematical physics and researchers alike.
Photoelectron Spectroscopy presents an up-to-date introduction to the field by comprehensively treating the electronic structures of atoms, molecules, solids, and surfaces. Brief descriptions are given of inverse photoemission, spin-polarized photoemission and photoelectron diffraction. Experimental aspects are considered throughout the book and the results are carefully interpreted in terms of the theory. A wealth of measured data is presented in tabular form for easy use by experimentalists. This new edition has been substantially updated and extended.
Computational Quantum Chemistry, Second Edition, is an extremely useful tool for teaching and research alike. It stipulates information in an accessible manner for scientific investigators, researchers and entrepreneurs. The book supplies an overview of the field and explains the fundamental underlying principles. It also gives the knowledge of numerous comparisons of different methods. The book consists of a wider range of applications in each chapter. It also provides a number of references which will be useful for academic and industrial researchers. It includes a large number of worked-out examples and unsolved problems for enhancing the computational skill of the users. Features Includes comprehensive coverage of most essential basic concepts Achieves greater clarity with improved planning of topics and is reader-friendly Deals with the mathematical techniques which will help readers to more efficient problem solving Explains a structured approach for mathematical derivations A reference book for academicians and scientific investigators Ram Yatan Prasad, PhD, DSc (India), DSc (hc) Colombo, is a Professor of Chemistry and former Vice Chancellor of S.K.M University, Jharkhand, India. Pranita, PhD, DSc (hc) Sri Lanka, FICS, is an Assistant Professor of Chemistry at Vinoba Bhave University, India. |
You may like...
Analytical Atomic Absorption…
Alfredo Sanz-Medel, Rosario Pereiro
Hardcover
R1,530
Discovery Miles 15 300
Encyclopedia of Spectroscopy and…
John C. Lindon, George E. Tranter, …
Hardcover
R59,229
Discovery Miles 592 290
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, …
Hardcover
R4,020
Discovery Miles 40 200
|