![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
This book focuses on the most recent, relevant, comprehensive and significant aspects in the well-established multidisciplinary field Laboratory Astrophysics. It focuses on astrophysical environments, which include asteroids, comets, the interstellar medium, and circumstellar and circumplanetary regions. Its scope lies between physics and chemistry, since it explores physical properties of the gas, ice, and dust present in those systems, as well as chemical reactions occurring in the gas phase, the bare dust surface, or in the ice bulk and its surface. Each chapter provides the necessary mathematical background to understand the subject, followed by a case study of the corresponding system. The book provides adequate material to help interpret the observations, or the computer models of astrophysical environments. It introduces and describes the use of spectroscopic tools for laboratory astrophysics. This book is mainly addressed to PhD graduates working in this field or observers and modelers searching for information on ice and dust processes.
This book on astronomical measurement takes a fresh approach to
teaching the subject. After discussing some general principles, it
follows the chain of measurement through atmosphere, imaging,
detection, spectroscopy, timing, and hypothesis testing. The
various wavelength regimes are covered in each section, emphasising
what is the same, and what is different. The author concentrates on
the physics of detection and the principles of measurement, aiming
to make this logically coherent.
Volume III/48B continues the compilation of nuclear quadrupole resonance spectroscopy (NQRS) data of solid substances, covering the literarure from 1995 to the end of 2006. It provides 1265 NQRS data sets (measurement method, nucleus, temperature, quadrupole coupling constant, asymmetry parameter, resonance frequeny, remarks, references) for substances with Hill formulae ranging from C10H16 to Zn. Included are the data for substances studied for the first time, as well as data for substances already present in previous volumes if the data published there could be completed or improved by the new studies.
The advent of non-invasive imaging technology, such as magnetic resonance imaging (MRI), has allowed biologists and clinicians to make great strides in unraveling the secrets of the brain. In Magnetic Resonance Neuroimaging: Methods and Protocols, expert researchers in the field provide a comprehensive collection of experimental MRI protocols that can be used to non-invasively interrogate the healthy and diseased brain. The chapters are divided into general techniques, such as the measurement of relaxivity, magnetic resonance spectroscopy, diffusion tensor imaging, and MR reporter genes, as well as specific applications in brain imaging, for example, phenotyping transgenic animals, detecting amyloid plaques, and fMRI in psychiatry. As a volume in the highly successful Methods in Molecular Biology(TM) series, this work contains the type of detailed description and implementation advice that is crucial for getting optimal results. Thorough and cutting-edge, Magnetic Resonance Neuroimaging: Methods and Protocols serves neuroscientists, clinical neurologists, psychiatrists, and radiologists with an excellent compendium of methods easily applied to both animal and human studies and certain to be an excellent resource for translational research.
Algebraic Theory of Molecules presents a fresh look at the mathematics of wave functions that provide the theoretical underpinnings of molecular spectroscopy. Written by renowned authorities in the field, the book demonstrates the advantages of algebraic theory over the more conventional geometric approach to developing the formal quantum mechanics inherent in molecular spectroscopy. Many examples are provided that compare the algebraic and geometric methods, illustrating the relationship between the algebraic approach and current experiments. The authors develop their presentation from a basic level so as to enable newcomers to enter the field while providing enough details and concrete examples to serve as a reference for the expert. Chemical physicists, physical chemists, and spectroscopists will want to read this exciting new approach to molecular spectroscopy.
ICOLS features the latest developments in the area of laser spectroscopy and related topics in atomic, molecular, and optical physics and other disciplines. The talks covered a broad range of exciting physics, such as precision tests of fundamental symmetries with atoms and molecules, atomic clocks, quantum many-body physics with ultra-cold atoms, atom interferometry, quantum information science with photons and ions, quantum optics, and ultra-fast atomic and molecular dynamics.The conference program comprised 14 sessions with 9 keynote addresses, 25 invited talks, and 3 hot topic talks. The speakers came from 15 different countries. Ever since the ICOLS conference series originated in 1973, its proceedings have been highly valued by many for capturing important developments in the field and offering the room to represent various aspects of specific research topics. The present volume contains some of the invited talks delivered at the conference.
The analytical power of ion mobility spectrometry-mass spectrometry (IMS-MS) instruments is poised to advance this technology from research to analytical laboratories. Exploring these developments at this critical juncture, Ion Mobility Spectrometry-Mass Spectrometry: Theory and Applications covers the tools, techniques, and applications involved when molecular size and shape information is combined with the well-known analytical advantages of high-performance mass spectrometry. One of the Most Exciting Developments in Contemporary Mass Spectrometry After presenting an overview chapter and the fundamentals, the book focuses on instrumentation and ionization sources. It describes an ion-mobility-capable quadrupole time-of-flight mass spectrometer, the differential mobility analyzer, a cryogenic-temperature ion mobility mass spectrometer, the atmospheric solids analysis probe method, and laserspray ionization. In the final applications-oriented chapters, the contributors explore how homebuilt and commercial instruments using electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) methods are employed to solve biological and synthetic issues. Harness the Power of IMS-MS for Analyzing Complex Substances This work helps readers unfamiliar with IMS-MS to understand its fundamental theory and practical applications. It also encourages them to investigate the potential analytical uses of IMS-MS and further explore the power of this method. Numerous color figures are included on downloadable resources.
Analytical Applications of Ionic Liquids reviews the current research in analytic chemistry, covering subjects as diverse as separation science, chromatography, spectroscopy and analytical electrochemistry.As scientific developments have moved into the 21st century, they have increasingly had to take into account the effects on the environment, both locally and globally. Because of this, the search for applications of ionic liquids is growing in every area of analytical chemistry. Here, material is presented by specialists, giving a critical overview of the current literature surrounding this increasingly prominent topic. Analysis is carried out on latest achievements and applications, followed by critical discussion of possible future developments.As well as stimulating further research among established analytical chemists, this book can also be used for undergraduate and graduate courses on chemistry and chemical technology.
This first volume in the new Fluorescence Spectroscopy series brings together fundametnal and applied research from this highly interdisciplinary field ranging from chemistry and physics to biology and medicine. Special attention is given to supramolecular systems, senso applications, confocal microscopy and protein-protein interactions. This casefully edited collection of state-of-the-art articles will serve as an invaluable tool for pactitioners and ..... and give them inspiration for new developments and applications.
This book summarizes the highlights of our work on the bond polarizability approach to the intensity analysis. The topics covered include surface enhanced Raman scattering, Raman excited virtual states and Raman optical activity (ROA). The first chapter briefly introduces the Raman effect in a succinct but clear way. Chapter 2 deals with the normal mode analysis. This is a basic tool for our work. Chapter 3 introduces our proposed algorithm for the Raman intensity analysis. Chapter 4 heavily introduces the physical picture of Raman virtual states. Chapter 5 offers details so that the readers can have a comprehensive idea of Raman virtual states. Chapter 6 demonstrates how this bond polarizability algorithm is extended to ROA intensity analysis. Chapters 7 and 8 offer details on ROA, showing many findings on ROA mechanism that were not known or neglected before. Chapter 9 introduces our proposed classical treatment on ROA which, as combined with the results from the bond polarizability analysis, leads to a comprehensive physical picture for the Raman effect. In particular, this classical treatment unifies ROA and VCD (vibrational circular dichroism) on equal footing. In each section, Comments summarize the key ideas and their evaluation. This will help the readers to capture the core ideas of the presentations.
Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement. Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of real high pressure devices that have demonstrated their capacity and have produced scientific results. After introducing basic engineering concepts related to the elastic and plastic behavior of cylindrical pressure devices, the text emphasizes mechanical and neutronic properties of construction materials. Subsequent chapters describe numerous high pressure techniques, including liquid/gas, clamp, and McWhan cells. The book also focuses on Paris-Edinburgh devices, high pressure metrology, and scientific applications.
All microbes, including bacteria, viruses, and fungi, can be classified and identified by matching a few peptides known to be unique to each organism. Identifying Microbes by Mass Spectrometry Proteomics describes ways to identify microorganisms using powerful new techniques combining hardware and software and yielding highly accurate methods for detection, identification, and classification of microbes. This straightforward technology can be used to detect unknown and unsequenced microorganisms as well as microbes in complex environmental samples. This book reviews various mass analyzers used for detection and describes ionization methods frequently used for analysis of microbial constituents, a necessary step in the preparation of mass spectrometry (MS) samples. The text also discusses diverse processing methods, which are used to analyze MS files for matching mass spectral profiles, and examines protein and nucleic acid sequence-based methods capable of classification and identification of microbial agents. The book also covers sample collection methods and specific sample preparation techniques. The text addresses using computer software and bioinformatics approaches for data mining to discriminate microbes using mass spectrometry proteomics (MSP). It also discusses historical pattern recognition-based methods and other approaches such as analysis of pyrolysis products, chemical ionization (CI) of fatty acid methyl esters, and MALDI-MS. The text contains examples of the application of the MSP technique for microbe detection and includes a survey of suitable and commercially available MS-based platforms. Successful applications include the identification of unknown microbes in honey bees associated with colony collapse disorder and the analysis of virus strains from the 2009 influenza pandemic. The final chapter outlines future trends in these groundbreaking uses of MS techniques, which are fast, not limited by sample type, and show potential in answering complex environmental questions.
Since the turn of the twenty-first century, applications of ion mobility spectrometry (IMS) have diversified, expanding their utility in the military and security spheres and entering the realms of clinical practice and pharmaceutical exploration. Updated and expanded, the third edition of Ion Mobility Spectrometry begins with a comprehensive discussion of the fundamental theory and practice of IMS. Divided into four sections-Overview, Technology, Fundamentals, and Applications-the authors treat innovations and advances in all aspects of IMS in a fresh, thorough, and revised format. Features: Introduces the definitions, theory, and practice of IMS and summarizes its history from the beginnings of the study of ions to present commercial and scholarly activities Presents the technology of IMS from a measurement perspective-covering inlet through ion formation, ion injection, electric fields, drift tube structures, and detectors Covers the end results of measurement, the mobility spectrum, and the transformative trend of ion mobility: mass spectrometry Discusses the influence on the experimental parameters on the mobility of ions Mobility-based methods are no longer restricted to volatile substances and indeed the many benefits of this technology-simplicity, convenience, and the low cost of technology-have become recognized as meritorious in a wide range of uses. This is also true for the advantages of measurements-high speed, distinctive spectral features, and operation in ambient pressure with thermalized ions. Ion Mobility Spectrometry, Third Edition serves specialists in the field of IMS who are interested in the potential of recent developments and researchers, engineers, and students who want a comprehensive overview of this technology.
This volume presents recent progress and perspectives in multi-photon processes and spectroscopy of atoms, ions, and molecules. The subjects in the series cover the experimental and theoretical investigations in interdisciplinary research fields in natural science including chemistry, physics, bioscience and material science.
This practical and unique textbook explains the core areas of molecular spectroscopy as a classical teacher would. The author carefully explores and explains each concept, walking side by side with the student through carefully constructed text, pedagogy, and derivations to ensure comprehension of the basics before approaching higher level topics. The author incorporates both electric resonance and magnetic resonance in the textbook. Uses boxes to explain more difficult topics and provides derivations to demonstrate "how and why". Includes coverage of electronic and NMR spectroscopy, both in sufficient detail. Discusses the density matrix method and its use in electronic spectroscopy before addressing it in NMR. Includes a chapter on Vibrational and Rotational Coherence Spectroscopy. Each chapter ends with problems with varying level of difficulty.
This monograph of Electro-Optical E?ects to Visualize Field- and Current- Distributions in Semiconductors consists of ?ve parts, four of which are based ontheresearchofcadmiumsul?de, wherealargenumberofcontributionswere made between 1958 and the late 1960s to directly observe ?eld and current distributionsandinterprettheirresults.Thevisualizationof?elddistributions was accomplished by using the Franz Keldysh e?ect, and the visualization of currentinhomogeneitiesusestheshiftoftheopticalabsorptionedgebyJoule's heating. The ?fth part deals with a review of the explosively developing ?eld of N- and S-shaped current voltage characteristics causing inhomogeneities and instabilities in ?eld and current distributions. This part of the book was composed by Eckehard Sch] oll of the Technical University in Berlin. A major emphasis is given to the ?rst part of the book in which s- tionary high-?eld domains are described. These domains can be used as an essential tool to determine unambiguously certain semiconductor properties, such as the electron density and its mobility as the function of the actual electric ?eld. It is also helpful to determine changes of the work function and electron a?nities between di?erent materials, such as for electrodes and h- erojunctions. Finally, it gives direct information about certain doping and their spacial pro?le."
Nuclear magnetic resonance (NMR) spectroscopy, a technique widely used for structure determination by chemists and biochemists, is based on the detection of tiny radio signals emitted by the nucleus of an atom when immersed in a strong magnetic field. Every chemical substance gives rise to a recognizable NMR signature closely related to its molecular structure. This comprehensive account adopts an accessible, pictorial approach to teach the fundamental principles of high resolution NMR. Mathematical formalism is used sparingly, and everyday analogies are used to provide insight into the physical behaviour of nuclear spins. The first three chapters set out the basic tools for understanding the rest of the book. Each of the remaining chapters provides a self- contained reference to a specific theme, for example spin echoes, and traces the way it influences our understanding of high resolution NMR methodology. Spin Choreography provides a clear and an authoritative introduction to the fundamental principles of high resolution NMR, which will appeal to all practitioners who wish to master this complex but fascinating subject. The book will also serve as supplementary reading for upper-level undergraduate and graduate courses on spectroscopy and physical methods.
Nanocharacterization by Atom Probe Tomography is a practical guide for researchers interested atomic level characterization of materials with atom probe tomography. Readers will find descriptions of the atom probe instrument and atom probe tomography technique, field ionization, field evaporation and field ion microscopy. The fundamental underlying physics principles are examined, in addition to data reconstruction and visualization, statistical data analysis methods and specimen preparation by electropolishing and FIB-based techniques. A full description of the local electrode atom probe - a new state-of-the-art instrument - is also provided, along with detailed descriptions and limitations of laser pulsing as a method to field evaporate atoms. Valuable coverage of the new ionization theory is also included, which underpins the overall technique.
This book brings together contributions from global experts who have helped to facilitate the exciting and rapid advances that are taking place in microbial metabolomics. The main application of this field is in clinical and veterinary microbiology, but there is a great potential to apply metabolomics to help to better understand complex biological systems that are dominated by multiple-species microbial populations exposed to changing growth and nutritional conditions. In particular, environmental (e.g., water, soil), food (e.g., microbial spoilage, food pathogens), and agricultural and industrial applications are seen as developing areas for microbial metabolomics. As such, the book includes contributions with clinical, environmental, and industrial perspectives.
This book includes the fundamental science and applications of carbon-based materials, in particular fused polycyclic hydrocarbon, fullerene, diamond, carbides, graphite and graphene etc. During the past decade, these carbon-based materials have attracted much interest from many scientists and engineers because of their exciting physical properties and potential application toward electronic and energy devices. In this book, the fundamental theory referring to these materials, their syntheses and characterizations, the physical properties (physics), and the applications are fully described, which will contribute to an advancement of not only basic science in this research field but also technology using these materials. The book's targets are researchers and engineers in the field and graduate school students who specialize in physics, chemistry, and materials science. Thus, this book addresses the physics and chemistry of the principal materials in the twenty-first century.
Solving Problems with NMR Spectroscopy, Second Edition, is a fully updated and revised version of the best-selling book. This new edition still clearly presents the basic principles and applications of NMR spectroscopy with only as much math as is necessary. It shows how to solve chemical structures with NMR by giving many new, clear examples for readers to understand and try, with new solutions provided in the text. It also explains new developments and concepts in NMR spectroscopy, including sensitivity problems (hardware and software solutions) and an extension of the multidimensional coverage to 3D NMR. The book also includes a series of applications showing how NMR is used in real life to solve advanced problems beyond simple small-molecule chemical analysis. This new text enables organic chemistry students to choose the most appropriate NMR techniques to solve specific structures. The problems provided by the authors help readers understand the discussion more clearly and the solution and interpretation of spectra help readers become proficient in the application of important, modern 1D, 2D, and 3D NMR techniques to structural studies.
Planar Chromatography-Mass Spectrometry focuses on a relatively new approach to chemical analysis in general, and to separation science in particular. It is the first book to systemically cover the theoretical background, techniques, instrumentation, and practical applications of planar chromatography-mass spectrometry as a hyphenated tool of analytical chemistry. It also examines the high and as-yet unexploited potential of planar chromatography-mass spectrometry for analytical use in scientific investigations. This book overviews the combination of planar chromatography, a relatively simple and cost-effective separation step for determining complex mixtures of compounds, with mass spectrometry, an efficient, highly instrumental, and relatively expensive technique that enables rapid identification of separated chemical species. It covers electrophoretic-mass spectrometry methods and applications, which are considered planar chromatographic techniques and are increasingly being exploited in proteomic and molecular biology studies as well as for medical diagnostic purposes. It also provides a selection of applications, such as drug control and forensic and food analysis, including more difficult substances such as carbohydrates and lipids. The book advocates growth in using planar chromatography-mass spectrometry in laboratories that have appropriate equipment but have not yet employed the techniques in combination. It also describes the use of a relatively inexpensive commercial system that can be adopted by laboratories currently working without the coupled methodology. Aiming to improve power and efficiency when other analytical methods are inadequate, Planar Chromatography-Mass Spectrometry encourages separation science practitioners in academia and industry to combine the two methods for enhanced results.
This work presents a snapshot of the state of the art of modern biomolecular crystallography, from crystallisation through structure determination and even interactive presentation on the web. Methods driving the latest automated structure determination pipelines are explained, as well as how to deal with problems such as crystal pathologies that still demand expert analysis. These methods are illustrated through their application to problems of great biological interest, such as the molecular machinery underlying the complement pathway, the mechanism of action of monoamine oxidase inhibitors, and the structure of the eukaryotic ribosome. Complementary approaches, such as neutron diffraction, small angle X-ray scattering, coherent diffraction and computational modelling, are also explored.
This volume gives a comprehensive insight into established and novel methods to analyze the structure and function of lipid rafts. This book covers topics such as isolation of lipid rafts and their functional analysis using biochemical methods; visualization of lipid rafts and their interaction with proteins using fluorescence-related methods; preparation of giant lipid vesicles and fluorescence spectroscopy; FRET and FRAP; and using photo-activated cross-linking of a ceramide analog combined with proximity ligation assay. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Lipid Rafts: Methods and Protocols is a valuable resource for both novice and expert researchers interested in learning more about the function of lipid rafts in many areas of cell biology and medicine.
Lena Daumanns's thesis describes structural and functional studies of the enzyme Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes. It also examines the properties of small mimics of this enzyme and related binuclear metallohydrolases such as the metallo-ss-lactamases to enhance our understanding of hydrolytic cleavage of important substrates like phosphoesters and -lactams. Overall, this project has led to a better understanding of the metal ion binding and active site structural features of the enzyme GpdQ. Daumann describes how she successfully immobilized phosphoesterase and related biomimetics on solid supports for potential applications in the area of bioremediation of organophosphate pesticides. Analysis shows that both the enzyme and biomimetics can be stored on the solid support without loss of activity. Furthermore, the author specroscopically and mechanistically characterized a number of Zn(II), Cd(II) and Co(II) complexes, some of which are among the most active biomimetics towards organophosphates reported to date. This thesis makes excellent reading for non-specialists because each chapter includes a short introduction section. |
You may like...
NMR Spectroscopy in the Undergraduate…
David Soulsby, Laura J. Anna, …
Hardcover
R4,835
Discovery Miles 48 350
Reference Materials in Measurement and…
Sergey V. Medvedevskikh, Egor P. Sobina, …
Hardcover
R4,702
Discovery Miles 47 020
Encyclopedia of Spectroscopy and…
John C. Lindon, George E. Tranter, …
Hardcover
R59,229
Discovery Miles 592 290
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,294
Discovery Miles 52 940
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, …
Hardcover
R4,020
Discovery Miles 40 200
Flavor of Dairy Products
Keith R. Cadwallader, Mary Anne Drake, …
Hardcover
R2,260
Discovery Miles 22 600
|