![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
Applications of Numerical Methods in Molecular Spectroscopy provides a mathematical background, theoretical perspective, and review of spectral data processing methods. The book discusses methods of complex spectral profile separation into bands, factor analysis methods, methods of quantitative analysis in molecular spectroscopy and reflectance spectroscopy, and new data processing methods. Mathematical methods in special areas of molecular spectroscopy, such as color science, electron spin resonance, and nuclear magnetic resonance spectroscopies are also covered. The book will benefit researchers and postgraduate students in fields of chemistry, physics, and biology.
Modern ESCA: The Principles and Practice of X-Ray Photoelectron Spectroscopy is a unique text/reference that focuses on the branch of electron spectroscopy generally labeled as either Electron Spectroscopy for Chemical Analysis (ESCA) or X-ray Photoelectron Spectroscopy (XPS). The book emphasizes the use of core level and valence band binding energies, their shifts, and line widths. It describes the background, present status, and possible future uses of a number of recently developed branches of ESCA, including:
A concise introduction, Optical Astronomical Spectroscopy appeals to the newcomer of astronomical spectroscopy and assumes no previous specialist knowledge. Beginning from the physical background of spectroscopy with a clear explanation of energy levels and spectroscopic notation, the book proceeds to introduce the main techniques of optical spectroscopy and the range of instrumentation that is available. With clarity and directness, it then describes the applications of spectroscopy in modern astronomy, such as the solar system, stars, nebulae, the interstellar medium, and galaxies, giving an immediate appeal to beginners.
NMR Spectroscopy in Liquids and Solids provides an introduction of the general concepts behind Nuclear Magnetic Resonance (NMR) and its applications, including how to perform adequate NMR experiments and interpret data collected in liquids and solids to characterize molecule systems in terms of their structure and dynamics. The book is composed of ten chapters. The first three chapters consider the theoretical basis of NMR spectroscopy, the theory of NMR relaxation, and the practice of relaxation measurements. The middle chapters discuss the general aspects of molecular dynamics and their relationships to NMR, NMR spectroscopy and relaxation studies in solutions, and special issues related to NMR in solutions. The remaining chapters introduce general principles and strategies involved in solid-state NMR studies, provide examples of applications of relaxation for the determination of molecular dynamics in diamagnetic solids, and discuss special issues related to solid state NMR including NMR relaxation in paramagnetic solids. All chapters are accompanied by references and recommended literature for further reading. Many practical examples of multinuclear NMR and relaxation experiments and their interpretations are also presented. The book is ideal for scientists new to NMR, students, and investigators working in the areas of chemistry, biochemistry, biology, pharmaceutical sciences, or materials science.
From forensics and security to pharmaceuticals and environmental applications, spectroscopic detection is one of the most cost-effective methods for identifying chemical compounds in a wide range of disciplines. For spectroscopic information, correlation charts are far more easily used than tables, especially for scientists and students whose own areas of specialization may lie elsewhere. The CRC Handbook of Fundamental Spectroscopic Correlation Charts provides a collection of spectroscopic information and unique correlation charts for use in the interpretation of spectroscopic measurements. The handbook presents useful analysis and assignment of spectra and structural elucidation of organic and organometallic molecules. The correlation charts are compiled from an extensive search of spectroscopic literature and contain current, detailed information that includes new results for many compounds. The handbook includes graphical data charts for nuclear magnetic resonance spectroscopy of the most useful nuclei, as well as infrared and ultraviolet spectrophotometry. Because mass spectrometry data is not best represented graphically, the data are presented in tabular form, where mass spectrometry can be used for analyses and structural determinations in tandem with other techniques. In addition to presenting absorption bands and intensities for a variety of important functional groups and chemical families, the book also discusses instrument calibration, diagnostics, common solvents, fragmentation patterns, several practical conversion tables, and laboratory safety. Not intended to replace reference works that provide exhaustive spectral charts on specific compound classes, this book fills the need for fundamental charts that are needed on a general, day-to-day basis. The CRC Handbook of Fundamental Spectroscopic Correlation Charts is an ideal laboratory companion for students and professionals in academic, industrial, and government labs.
Both the early use of artificial lighting and current manufacturing methods concerning incandescent and fluorescent lamps are covered in this book. The protocols for manufacture of fluorescent lamp phosphors and those used in cathode ray tubes are also treated in some detail. This text surveys the amazing, vast array of artificial lighting devices known to date in terms of how they arose and are, or have been used by mankind. A complete description of the formulations and methodology for manufacturing all known phosphors is given. The book will serve as a repository of such phosphor manufacturing methods, including that of cathode ray tube phosphors. Methods of manufacture of lamp parts are also presented, including that of tungsten wire. The original approaches used are described as well as improvements in technology. These will serve as comparative methods for present day manufacture of these components. A history of the lamp industry is presented. Several methods are given which may serve as a source for further work in the lamp industry. Some of the earliest work has been applied in the laser industry to develop new types of discharge lasers. These include nitrogen-gas lasers and the rare gas (excimer) lasers. Previous work on lamps may also be applied in the development of new types of lasers.
Presents chemical state imaging methods useful on distance scales ranging from individual atoms to millimeters. This work is intended for chemists familiar with modern spectroscopies, but includes tutorial material on basic imaging processes for those with little background in the field.
With usage of mass spectrometry continually expanding, an increasing number of scientists, technicians, students, and physicians are coming into contact with this valuable technique. Mass spectrometry has many uses, both qualitative and quantitative, from analyzing simple gases to environmental contaminants, pharmaceuticals, and complex biopolymers. The extraordinary versatility can make mass spectrometers daunting to novices. Consequently, new users would benefit greatly from an understanding of the basic concepts as well as the processes that occur in these instruments. Mass Spectrometry for the Novice provides exactly that, with detailed, straightforward descriptions and clear illustrations of principles of operations and techniques. The book begins with an overview that includes essential definitions and then provides information on the components of and the strategies used in the most common instruments. The authors discuss the methodologies available, classes of compounds analyzed, and the types of data that can be generated. A group of representative applications from published articles is summarized, demonstrating the diversity of mass spectrometry. The authors also condense the essentials of the topic into one invaluable chapter that provides a set of concise take-home messages on all aspects of mass spectrometry. The final section provides a collection of resources including books, reviews, and useful websites. Using simple language, new color figures, clever cartoons, and assuming no prior knowledge, this book provides a readily understandable entree to mass spectrometry. Downloadable resources with selected figures and cartoons is included.
This book highlights recent advances in quantum control technologies with regard to hybrid quantum systems. It addresses the following topics: phonon engineering based on phononic crystals, carbon-based nano materials like graphene and nanotubes, Terahertz light technology for single-molecule and quantum dots, nuclear-spin-based metrology for semiconductor quantum systems, quantum anomalous Hall effect in magnetic topological insulators, chiral three-dimensional photonic crystals, and bio-inspired magnonic systems. Each topic, as a component in the framework of hybrid quantum systems, is concisely presented by experts at the forefront of the field. Accordingly, the book offers a valuable asset, and will help readers find advanced technologies and materials suitable for their purposes.
This book addresses Furnace Atomic Absorption Spectroscopy (FAAS), which has gained worldwide acceptance as an analytical technique. FAAS offers 100-1000 times better determination and detection limits than other techniques for a majority of the elements. This technique requires a small sample size, and demands less sample-preparation time than others. The handbook is a collection of thousands of references for detection and determination of various elements in agricultural products, biological and clinical samples, and metallurgical and electronic materials. Each chapter is devoted to an element or a similar group of elements. Included are instrumental setup parameters, references, and author and subject indexes. Also presented are detailed appendixes covering glossary, list of manufacturers of spectrophotometers and its accessories, list of chemical suppliers, and list of reviews and abstracts. The handbook covers topics such as heavy metals, clinical products, and trace metal analysis. This desk-top reference is meant for chemists who handle day-to-day analysis problems in laboratories in government, clinical, industrial and academic settings. It is invaluable for those involved in research in environmental science, analytical chemistry, clinical chemistry and forensic science.
Keeping mathematics to a minimum, this book introduces nuclear properties, nuclear screening, chemical shift, spin-spin coupling, and relaxation. It is one of the few books that provides the student with the physical background to NMR spectroscopy from the point of view of the whole of the periodic table rather than concentrating on the narrow applications of 1H and 13C NMR spectroscopy. Aids to structure determination, such as decoupling, the nuclear Overhauser effect, INEPT, DEPT, and special editing, and two dimensional NMR spectroscopy are discussed in detail with examples, including the complete assignment of the 1H and 13C NMR spectra of D-amygdain. The authors examine the requirements of a modern spectrometer and the effects of pulses and discuss the effects of dynamic processes as a function of temperature or pressure on NMR spectra. The book concludes with chapters on some of the applications of NMR spectroscopy to medical and non-medical imaging techniques and solid state chemistry of both I = F1/2 and I > F1/2 nuclei. Examples and problems, mainly from the recent inorganic/organometallic chemistry literature support the text throughout. Brief answers to all the problems are provided in the text with full answers at the end of the book.
This quick-reference guide contains over 400 Fourier-transform infrared (FTIR) spectra of commonly used pesticides and related metabolites. Systematically arranged for easy referral, the book: supplies relevant chemical, physical and structural data, in addition to the spectra; compares the improved quality of spectra performed on Fourier transform instruments, in terms of signal-to-noise ratio and optical resolution, to those recorded on dispersive spectrometers; and promotes Good Laborotory Practices (GLP) and Good Manufacturing Practices (GMP) by applying infrared spectroscopy to identify control of standards prior to performing qualitative and quantitative analyses.
For a host of reasons, nonlinear optical spectroscopy is a valuable tool for biochemical applications where minimally invasive diagnostics is desired. Biochemical Applications of Nonlinear Optical Spectroscopy presents the latest technological advances and offers a perspective on future directions in this important field. Written by an international panel of experts, this volume begins with a comparison of nonlinear optical spectroscopy and x-ray crystallography. The text examines the use of multiphoton fluorescence to study chemical phenomena in the skin, the use of nonlinear optics to enhance traditional optical spectroscopy, and the multimodal approach, which incorporates several spectroscopic techniques in one instrument. Later chapters explore Raman microscopy, third-harmonic generation microscopy, and non-linear Raman microspectroscopy. The text explores the promise of beam shaping and the use of broadband laser pulse generated through continuum generation and an optical pulse shaper. Lastly, the book discusses the effects of spatial beam shaping on the generated nonlinear Raman signals in a tightly focused geometry and provides insight into the extension of nonlinear optical spectroscopy to the nanoscale through the use of plasmonic tip-enhanced arrangement. With novel experimental approaches to this technology expanding day-by-day, the book's balanced coverage from a wide range of international contributors not only elucidates important achievements, but also outlines future directions in this dynamic and promising field.
Offers coverage of internal reflection spectroscopy (IRS) and its applications to polymer, semiconductor, biological, electrochemical and membrane research. This work describes the theory and procedures and identifies the spectral regions, from materials characterization to process monitoring.
Provides a comprehensive guide to the use of gas chromatography-mass spectrometry (GC-MS) on environmentally significant organic compounds This book presents a library of mass spectra of 1,725 biologically and environmentally important organic compounds, in the form of their trimethylsilyl derivatives (TMS), as well as their linear temperature programmed chromatographic retention indices, RI, whose values are in the range of 700-4700 index units. Of the compounds presented, more than 60% of compounds have not previously been characterized by their mass spectra, and more than 70% not previously been characterized by their RI values. Some of these compounds, never before analysed via MS and GC, were detected by the author's team in plant tissues. The first chapters of the book are devoted to the methodology and practice of sample preparation, as well as to mass spectrometry considerations. They contain the discussion of possible complications and limitations of the method. The book includes lists of chemical compounds in alphabetical order, as well as in the order of their retention indices which facilitates the search for parameters of interest. Every compound in the book includes a RI value, mass spectrum, CAS number (if available), molecular and structural formula, formula weight, chemical name and list of synonyms, as well the source of compounds used for registration of spectrum and RI value. Features mass spectra and chromatographic retention indices of 1,725 organic substances in the form of their trimethylsilyl derivatives (TMS) Includes the CAS number, molecular and structural formula, formula weight, mass spectrum, chemical name and list of synonyms, and more for every compound covered within The first publication containing analytical parameters of high-boiling compounds such as glycosides, lignans, and phenylpropenoid glycerides with RI values >4000 GC-MS of Biologically and Environmentally Significant Organic Compounds will appeal to specialists in phytochemical analysis, food, and environmental chemistry, as well as other investigators dealing with GC or GC/MS analysis complex mixtures of organic compounds. The accompanying electronic database, "Biologically and Environmentally Important Organic Compounds - GCMS Library", will be published in mid-2020, ISBN: 978-1-119-60170-8.
Reflecting the substantial increase in popularity of quadrupole ion traps and Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers, Practical Aspects of Trapped Ion Mass Spectrometry, Volume IV: Theory and Instrumentation explores the historical origins of the latest advances in this expanding field. It covers new methods for trapping ions, such as the Orbitrap (TM), the digital ion trap (DIT), the rectilinear ion trap (RIT), and the toroidal ion trap; the development and application of the quadrupole ion trap (QIT) and the quadrupole linear ion trap (LIT); and the introduction of high-field asymmetric waveform ion mobility spectrometry (FAIMS). After a combined appreciation and historical survey of mass spectrometry and a discussion of how improved capabilities for microfabrication have led to interest in arrays of ion traps, the book examines the theory and practice of the Orbitrap mass analyzer, the rectangular waveform-driven DIT mass spectrometer, FAIMS, and ion traps with circular geometries. It next discusses ion accumulation for increasing sensitivity in FT-ICR spectrometry, a radio frequency-only-mode event for Penning traps in FT MS, and an FT operating mode applied to a 3D-QIT. The text then presents three behavioral aspects of quadrupole rod sets, before illustrating the development of the 3D-QIT in recent years. The final chapters explore photodissociation in ion traps and the chemical and photochemical studies of metal dication complexes in a 3D-QIT. In this volume that spans twenty-one chapters, a stellar panel of leading experts and up-and-coming researchers presents a cohesive, global, and up-to-date view of the practical aspects of using trapped ion devices. A companion to Volume V: Applications of Ion Trapping Devices, the book authoritatively covers the theory involved as well as the instrumentation currently used in this dynamic field.
The only comprehensive guide to CIMS applications in structural elucidation and analytical studies
Photon-in-photon-out core level spectroscopy is an emerging approach to characterize the electronic structure of catalysts and enzymes, and it is either installed or planned for intense synchrotron beam lines and X-ray free electron lasers. This type of spectroscopy requires high-energy resolution spectroscopy not only for the incoming X-ray beam but also, in most applications, for the detection of the outgoing photons. Thus, the use of high-resolution X-ray crystal spectrometers whose resolving power E/E is typically about 10-4, is mandatory. High-Resolution XAS/XES: Analyzing Electronic Structures of Catalysts covers the latest developments in X-ray light sources, detectors, crystal spectrometers, and photon-in-photon-out core level spectroscopy techniques. It also addresses photon-in-photon-out core level spectroscopy applications for the study of catalytic systems, highlighting hard X-ray measurements primarily due to probe high penetration, enabling in situ studies. This first-of-its-kind book: Discusses high-resolution X-ray emission spectroscopy (XES) and X-ray absorption spectroscopy (XAS) in terms of time-resolved and surface enhancement Supplies an understanding of catalytic reactivity essential for capitalizing on core level X-ray spectroscopy at fourth-generation light sources (XFELs) Describes all spectrometers developed to perform core level X-ray spectroscopy, considering the advantages and disadvantages of each Details methods to elucidate aspects of catalysts under working conditions, such as active sites and molecule adsorption Introduces theoretical calculations of spectra and explores biological as well as heterogeneous catalysts Complete with guidelines and warnings for the use of this type of spectroscopy, High-Resolution XAS/XES: Analyzing Electronic Structures of Catalysts provides a comprehensive overview of the current state of this exciting field.
Over recent years electronic spectroscopy has developed significantly, with key applications in atmospheric chemistry, astrophysics and astrochemistry. High Resolution Electronic Spectroscopy of Small Molecules explores both theoretical and experimental approaches to understanding the electronic spectra of small molecules, and explains how this information translates to practice. Professors Geoffrey Duxbury and Alexander Alijah present the links between spectroscopy and photochemistry, and discuss theoretical treatments of the interaction between different electronic states. They provide a thorough discussion of experimental techniques, and explore practical applications. This book will be an indispensable reference for graduate students and researchers in physics and chemistry working on theoretical and practical aspects of electronic spectra, as well as atmospheric scientists, photochemists, kineticists and professional spectroscopists.
This book provides a comprehensive review of the application of 17O NMR spectroscopy to organic chemistry. Topics include the theoretical aspects of chemical shift, quadrupolar and J coupling; 17O enrichment; the effect of steric interactions on 17O chemical shifts of functional groups in flexible and rigid systems; the application of 17O NMR spectroscopy to hydrogen bonding investigations; mechanistic problems in organic and bioorganic chemistry; and 17O NMR spectroscopy of oxygen monocoordinated to carbon in alcohols, ethers, and derivatives. Recent results that show correlations between molecular geometry, determined by X-ray studies and estimated by molecular mechanics calculations, and 17O chemical shifts are also covered. 17O Spectroscopy in Organic Chemistry provides important reference information for organic chemists and other scientists interested in 17O NMR spectroscopy as a tool for obtaining new structural and chemical data about organic molecules.
This guide to two-dimensional NMR spectroscopy helps the novice who
want e the technique, but needs a path through the bewildering
array of metho acronyms and the mathematical rigor found in most
books.
The analytical power of ion mobility spectrometry-mass spectrometry (IMS-MS) instruments is poised to advance this technology from research to analytical laboratories. Exploring these developments at this critical juncture, Ion Mobility Spectrometry-Mass Spectrometry: Theory and Applications covers the tools, techniques, and applications involved when molecular size and shape information is combined with the well-known analytical advantages of high-performance mass spectrometry. One of the Most Exciting Developments in Contemporary Mass Spectrometry After presenting an overview chapter and the fundamentals, the book focuses on instrumentation and ionization sources. It describes an ion-mobility-capable quadrupole time-of-flight mass spectrometer, the differential mobility analyzer, a cryogenic-temperature ion mobility mass spectrometer, the atmospheric solids analysis probe method, and laserspray ionization. In the final applications-oriented chapters, the contributors explore how homebuilt and commercial instruments using electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) methods are employed to solve biological and synthetic issues. Harness the Power of IMS-MS for Analyzing Complex Substances This work helps readers unfamiliar with IMS-MS to understand its fundamental theory and practical applications. It also encourages them to investigate the potential analytical uses of IMS-MS and further explore the power of this method. Numerous color figures are included on downloadable resources.
This book is intended to serve as an up-to-date reference source for those familiar with chromatography/Fourier transform infrared spectroscopy (FT-IR) methods and as an introduction to techniques and applications for those interested in future uses for chromatography/FT-IR.
Since the turn of the twenty-first century, applications of ion mobility spectrometry (IMS) have diversified, expanding their utility in the military and security spheres and entering the realms of clinical practice and pharmaceutical exploration. Updated and expanded, the third edition of Ion Mobility Spectrometry begins with a comprehensive discussion of the fundamental theory and practice of IMS. Divided into four sections-Overview, Technology, Fundamentals, and Applications-the authors treat innovations and advances in all aspects of IMS in a fresh, thorough, and revised format. Features: Introduces the definitions, theory, and practice of IMS and summarizes its history from the beginnings of the study of ions to present commercial and scholarly activities Presents the technology of IMS from a measurement perspective-covering inlet through ion formation, ion injection, electric fields, drift tube structures, and detectors Covers the end results of measurement, the mobility spectrum, and the transformative trend of ion mobility: mass spectrometry Discusses the influence on the experimental parameters on the mobility of ions Mobility-based methods are no longer restricted to volatile substances and indeed the many benefits of this technology-simplicity, convenience, and the low cost of technology-have become recognized as meritorious in a wide range of uses. This is also true for the advantages of measurements-high speed, distinctive spectral features, and operation in ambient pressure with thermalized ions. Ion Mobility Spectrometry, Third Edition serves specialists in the field of IMS who are interested in the potential of recent developments and researchers, engineers, and students who want a comprehensive overview of this technology.
Laser spectroscopy has been perfected over the last fifteen years
to become a precise tool for the investigation of highly
vibrationally excited molecules. Intense infrared laser radiation
permits both the multiple-photon resonant excitation and the
dissociation of polyatomic molecules. In this book, the latest
results of some of the foremost Soviet researchers are published
for the first time in the West. |
![]() ![]() You may like...
Research Anthology on Recent Trends…
Information Reso Management Association
Hardcover
R10,621
Discovery Miles 106 210
JavaScript - Syntax and Practices
Ravi Tomar, Sarishma Dangi
Hardcover
R3,584
Discovery Miles 35 840
|