![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
Selecting illustrative examples from the recent literature, this reference studies the underlying principles and physics of a wide range of spectroscopic techniques utilized in the pharmaceutical sciences and demonstrates various applications for each method analyzed in the text-showing how knowledge of the mechanisms of spectroscopic phenomena may facilitate more advanced technologies in the field.
Storage and conversion are critical components of important energy-related technologies. "Advanced Batteries: Materials Science Aspects" employs materials science concepts and tools to describe the critical features that control the behavior of advanced electrochemical storage systems. This volume focuses on the basic phenomena that determine the properties of the components, i.e. electrodes and electrolytes, of advanced systems, as well as experimental methods used to study their critical parameters. This unique materials science approach utilizes concepts and methodologies different from those typical in electrochemical texts, offering a fresh, fundamental and tutorial perspective of advanced battery systems. Graduate students, scientists and engineers interested in electrochemical energy storage and conversion will find "Advanced Batteries: Materials Science Aspects" a valuable reference.
The last few years have seen an unprecedented drive toward the
application of proteomics to resolving challenging biomedical and
biochemical tasks. Separation techniques combined with modern mass
spectrometry are playing a central role in this drive. This book
discusses the increasingly important role of mass spectrometry in
proteomic research, and emphasizes recent advances in the existing
technology and describes the advantages and pitfalls as well.
This book provides an introduction to optical anisotropy (linear dichroism, LD) and optical activity (circular dichroism, CD) as techniques for the study of structures and interactions of molecules in solution. The book covers the use of these techniques for both small and large molecular systems with particular emphasis being placed on proteins and nucleic acids. CD is a well-established technique and this book aims to explain how it can be used simply and effectively for new entrants to the field as well as covering more advanced techniques for experts. LD is often seen as a rather exotic method intended only for experienced spectroscopists. This book demonstrates that it is an approach with real utility that may be used by both students and scientists from graduate level onwards to give simple answers, which are not available from any other technique, to structural and kinetic questions. Much of the emphasis is on flow orientation of samples in solution phase. The book first describes the techniques and the information they can provide; it then goes on to give specific details on how to actually implement them, including a wide range of examples showing how LD and CD can help with * protein and nucleic acid secondary structure elucidation; * analysis of the formation and rearrangements of fibrous proteins and membrane proteins; * identification of the absolute configuration of small molecules; * determination of the orientation of small molecules in anisotropic media; * assignment of transition moment polarizations; * investigation of binding strengths and geometries of ligand-macromolecule complexes; * 3-D structure determination from LD, molecular replacement and MD modeling. The advantages of combined LD/CD studies are also outlined with examples of DNA/drug complexes and protein insertion into membranes. Taken together the book represents a comprehensive text on the theory and application of LD and CD in the chemical and biological sciences.
This volume is intended to show beginners in modern Fourier Transform-Infrared analysis which technique of infrared analysis should be selected and how to use it to obtain certain information from the most common samples brought into research and analytical laboratories in production industries.
Conjugated polymeric materials and their nanocomposites are widely used for the creation of alternative sources of renewable energy, cell phone screens, mobile gadgets, video players and OLED-TV, as well as organic diodes, transistors, sensors, etc. with field-dependent and spin-assisted electronic properties. Multifrequency EPR Spectroscopy methods can help researchers optimize their structural, magnetic and electronic properties for the creation of more efficient molecular devices. This book will acquaint the reader with the basic properties of conjugated polymers, the fundamentals of EPR Spectroscopy, and the information that can be obtained at different wavebands of EPR spectroscopy.
Metabolomics is a fast growing field in systems biology and offers a powerful and promising approach for a large range of applications. Metabolomics focuses on deriving the concentrations and fluxes of low molecular weight metabolites in bio-fluids, cells or tissue, plants, foods and related samples and this information provides enormous detail on biological systems and their current status. "Mass Spectrometry in Metabolomics: Methods and Protocols "presents a broad coverage of the major mass spectrometry (MS)-based metabolomics methods and applications. MS is one of most powerful and commonly used analytical methods in metabolomics; because so many different MS systems are used in metabolomics, this volume includes a wide variety such as triple quads, time of flight, Fourier transform ion cyclotron resonance and even simple quadrupole systems. A wide range of studies are described, with samples ranging from blood and urine to tissue and even plants. Written in the successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, "Mass Spectrometry in Metabolomics: Methods and Protocols "seeks to serve both professionals and novices with its well-honed methodologies in an effort to further the dynamic field of metabolomics.
Atomic spectrometry has exciting new bio-analytical horizons open to it, principally through the developments in the capabilities of ICP-MS coupled with the inventiveness of experimentalists. This is reflected in the use of the technique for ion-, capillary electrophoresis-, liquid- and gas-chromatographic separation in biological applications, as reported in this book. Traditional (environmental, semiconductor, geological and clinical) applications are also well represented. In addition, recent and future developments in sample introduction devices, multicollector sector, reaction cells and collision cells instruments, as well as co-existence, divergence and potential convergence of atomic and biomolecular mass spectrometries are discussed. Reflecting the current state of practical ICP-MS and drawing together the latest developments in the field, Plasma Source Mass Spectrometry: Current Trends and Future Developments is ideal for university researchers and laboratory practitioners. It will be of interest to all those involved in the development and application of this technique.
This book reviews advances in important and practically relevant homogeneous catalytic transformations, such as single-site olefin polymerizations and chemo- and stereo-selective oxidations. Close attention is paid to the experimental investigation of the active sites of catalytic oxidation systems and their mechanisms. Major subjects include the applications of NMR and EPR spectroscopic techniques and data obtained by other physical methods. The book addresses a broad readership and focus on widespread techniques available in labs with NMR and EPR spectrometers.
Annual Reports on NMR Spectroscopy, Volume 100, is a premier resource for both specialists and non-specialists who are looking to become familiar with new techniques and applications in NMR spectroscopy. Chapters in this new release cover In Operando NMR Studies, Recent Developments in Automotive Differential Analysis of NMR Results, Applications of SIMPSON to NMR Studies of Peptides and Proteins, Recent Developments in NMR Line Shape Analysis, and more.
This volume presents a complete and thorough examination of advances in the instrumentation, evaluation, and implementation of UV technology for reliable and efficient data acquisition and analysis. It provides real-world applications in expanding fields such as chemical physics, plasma science, photolithography, laser spectroscopy, astronomy and atmospheric science.
Inelastic neutron scattering (INS) is a spectroscopic technique in which neutrons are used to probe the dynamics of atoms and molecules in solids and liquids. This book is the first, since the late 1960s, to cover the principles and applications of INS as a vibrational-spectroscopic technique. It provides a hands-on account of the use of INS, concentrating on how neutron vibrational spectroscopy can be employed to obtain chemical information on a range of materials that are of interest to chemists, biologists, materials scientists, surface scientists and catalyst researchers. This is an accessible and comprehensive single-volume primary text and reference source.
Raman Spectroscopy in Archaeology and Art History highlights the important contributions Raman spectroscopy makes as a non-destructive method for characterising the chemical composition and structure and in determining the provenance and authenticity of objects of archaeological and historical importance. It brings together studies from diverse areas and represents the first dedicated work on the use of this technique in this increasingly important field. Coverage includes: An Introduction to Raman Spectroscopy, including practical aspects of Raman spectroscopy and complementary techniques; Dyes and Pigments; Artefacts; Biological Materials and Degradation; Jewellery and Precious Stones. The book contains a broad selection of real-world examples in the form of case studies to provide the reader with a true appreciation of the procedures that need to be invoked to derive spectroscopic information from some of the most challenging specimens and systems. Colour illustrations of objects of investigation and a database of 72 Raman spectra of relevant minerals are included. With its extensive examples, Raman Spectroscopy in Archaeology and Art History will be of particular interest to specialists in the field, including researchers and scientific/conservation staff in museums. Academics will find it an invaluable reference to the use of Raman spectroscopy.
Mass Spectrometry: A Foundation Course is a textbook covering the field of mass spectrometry across the chemical, physical, biological, medical and environmental sciences. Sufficient depth is provided for the reader to appreciate the reasons behind and basis for particular experiments. It is uniquely and logically organised to enable the book to form the basis for a university course in mass spectrometry at the undergraduate or postgraduate level. This is achieved by combining specific core sections coupled to optional areas of study tailored to students of the chemical, physical, biological, medical and environmental sciences. Recommended course structures are provided in the front of the book. Dedicated chapters are included on: organic mass spectrometry; ion chemistry - to emphasise the role of mass spectrometry in fundamental chemistry and physics; biological mass spectrometry including proteomics; mass spectrometry in medicine, environmental and surface science and accelerator mass spectrometry, to emphasise the importance of these areas. Each chapter concludes with key references and additional recommended reading material, making the book an excellent springboard to further study. Highly readable, easy-to-use and logically presented, Mass Spectrometry: A Foundation Course is an ideal text for students and for those who work with mass spectrometers who wish to gain a solid understanding of the basics in modern mass spectrometry. "From the reviews: " " Although I am not a fan or either "eras" or "omes" you hear all the time that we now live in the era of the proteome. Setting aside the issues of what constitutes proteomics (after all people have been sequencingproteins and studying their structure for a few years nowA... ), and whether the regular appearance of reports of another organisms genome sequence prevents you from saying that we are in the post-genomic era, it is clear that the analysis of large numbers of complex protein mixtures is just about in all of our reach. This is going to be a very important way to look for molecular markers and targets in the battle against cancer. The bedrock of proteomic analysis is mass spectrometry, which
allows you to accurately measure the mass of molecules. In
proteomics this can mean studying the mass of intact proteins,
which can give you a clue as to their identity, and help you
rapidly identify modifications. It can also mean busting the
protein into many component fragments and measuring their mass,
which can lead to protein identification via clever algorithms that
compare measured fragment sizes to predicted ones using the genome
databases. The first is Mass Spectrometry: A Foundation Course by Kevin Downard of Sydney, Australia. This book covers many aspects of the field in under 200 pages, and has a handy guide to what sections are useful to individuals from different disciplines. It starts with history and concepts, and then devotes a significant amount of space to the instrumentation. This is very useful to anyone who has been to a massspectrometry meeting and trade show or even browsed the relevant companies websites. Dr. Downard covers the basics of how each variant works, and what it is best suited for, and includes discussion of single and tandem instruments. By the end you'll be able to raise your eyebrows appreciatively the next time a salesman fires an acronym and figure at you (or at least you'll know where to look it up once you have reached a safe distance). The second half of the book looks at specific applications for mass spectrometry, and here you can read selectively on what you are interested in doing. The sections on protein analysis were good primers. The book is quite mathematical throughout, and since I have no talent in this direction, the equations merely confirmed my deficiency in this area - to those of you who like it, it is there. Then at the end are a series of very useful appendices that show amino acid masses, masses of common protein modifications and websites for further reading or for protein identification, among other useful things. I recommend this book highly to anyone looking for a first port of call on the journey to mass spectrometry." [Oliver Bogler] "From the reviews: " " Mass spectrometry today plays a vital role in a range of
scientific disciplines including synthetic and physical organic
chemistry, biological and medicinal chemistry and environmental and
surface sciences. Few introductory texts have kept up with these advances, although there have been recent specialist texts on biotechnology and on LC/MS. Downard's book seeks to provide a basis for instruction of undergraduate and new postgraduate students. His philosophy has been to write introductory sections for all the basic aspects of mass spectrometry - his 'core' course - and to add sections for the major areas in which it is employed. These additional sections can be optionally added to the core course, as desired. Downard provides a menu suggesting how they can be put together. Each core section is well written and covers the basis of the science concerned very satisfactorily. The sections that describe the different applications are necessarily condensed and the author tries to give extra reading with a good set of references. Students who plan to use mass spectrometry in proteomic research will require much further assistance and the same goes for metabolomic/metabonomic studies and for users of quantitative analysis, but, for both, the core sections will be valuable." [Tony Mallet]
The first edition of this now classic work helped to establish mass spectrometry as the premier tool for drug metabolism studies. Completely rewritten from start to finish, Using Mass Spectrometry for Drug Metabolism Studies, Second Edition brings medicinal chemists and mass spectrometry professionals up to speed with the rapid advances in the field, the emergence of cutting-edge approaches, and ways to meet steadily increasing vendor demands. Written by international scientists who are experts in their respective disciplines, this state-of-the-art reference effectively encapsulates current mass spectrometry best practices. The stand-alone chapters cover various topics - from metabolite identification to fast chromatography with UPLC - and in a style that is understandable to experts and field newcomers alike. The second edition of this bestseller includes coverage of new instrumentation and software as well as a wealth of updated information on the latest findings surrounding biomarkers and metabolomics and new chapters on both UPLC and DESI/DART. With more than 180 illustrations and an eight-page color insert, this valuable reference explores multiple modern mass spectrometry techniques and strategies. It includes an excellent overview of the entire drug discovery process plus the latest developments on how mass spectrometry is used to support this endeavor.
Chemometrics in Analytical Spectroscopy provides students and practising analysts with a tutorial guide to the use and application of the more commonly encountered techniques used in processing and interpreting analytical spectroscopic data. In detail the book covers the basic elements of univariate and multivariate data analysis, the acquisition of digital data and signal enhancement by filtering and smoothing, feature selection and extraction, pattern recognition, exploratory data analysis by clustering, and common algorithms in use for multivariate calibration techniques. An appendix is included which serves as an introduction or refresher in matrix algebra. The extensive use of worked examples throughout gives Chemometrics in Analytical Spectroscopy special relevance in teaching and introducing chemometrics to undergraduates and post-graduates undertaking analytical science courses. It assumes only a very moderate level of mathematics, making the material far more accessible than other publications on chemometrics. The book is also ideal for analysts with little specialist background in statistics or mathematical methods, who wish to appreciate the wealth of material published in chemometrics.
This edited book, based on material presented at the EU Spec Training School on Multiple Scattering Codes and the following MSNano Conference, is divided into two distinct parts. The first part, subtitled "basic knowledge", provides the basics of the multiple scattering description in spectroscopies, enabling readers to understand the physics behind the various multiple scattering codes available for modelling spectroscopies. The second part, "extended knowledge", presents "state- of-the-art" short chapters on specific subjects associated with improving of the actual description of spectroscopies within the multiple scattering formalism, such as inelastic processes, or precise examples of modelling.
Theory and Ion Chemistry concentrates on the fundamental aspects of
a set of 13 carefully chosen topics covering the whole field of
mass spectrometry. It covers both primary (basic) considerations,
as well as advanced topics, the former aimed at newcomers to the
field, the latter at the experienced practitioner who may not
necessarily be an expert in the particular area. Article references
will cover three areas: 1) original or pioneering work in the area
2) seminal contributions to the area, including examples
illustrating a given application and 3) useful review articles.
This book reviews the most recent developments of fluorescent imaging techniques for medicinal chemistry research and biomedical applications, including cell imaging, in vitro diagnosis and in vivo imaging. Fluorescent imaging techniques play an important role in basic research, drug discovery and clinical translation. They have great impact to many fields including chemical biology, cell biology, medical imaging, cancer diagnosis and treatment, pharmaceutical science, among others, and they have facilitated our understanding of diseases and helped to develop many novel powerful tools for imaging and treatment of diseases. This book will appeal to scientists from numerous fields such as chemistry, pharmaceutical science, biology, materials science, and medicine, and it will serve as a very useful and handy resource for readers with different levels of scientific knowledge, ranging from entry level to professional level.
This book provides a snapshot of the current state-of-the-art of the understanding of the fundamentals of ICPMS, instrumental development, methods development, spectral interpretation and applications. It covers a diverse range of topics including: bioanalytical applications (immunoassay, state of phosphorylation, metallo-drugs); environmental applications (drinking water, groundwater, seawater, speciation); reaction cells and collision cells (theory and applications); archaeology; laser ablation; isotope ratio analysis; and the performance, characterization and applications of multicollector instruments. Written by international contributors who emphasize their current perceptions and understanding of the subject, Plasma Source Mass Spectrometry: Applications and Emerging Technologies offers a current perspective on elemental analysis by plasma source mass spectrometry that is not to be found elsewhere. Researchers and professionals in many areas will welcome this book, particularly those in the fields of bioanalytical, environmental and geological chemistry.
Synchrotron radiation is today extensively used for fundamental and applied research in many different fields of science. Its exceptional characteristics in terms of intensity, brilliance, spectral range, time structure and now also coherence pushed many experimental techniques to previously un-reachable limits, enabling the performance of experiments unbelievable only few years ago. The book gives an up-to-date overview of synchrotron radiation research today with a view to the future, starting from its generation and sources, its interaction with matter, illustrating the main experimental technique employed and provides an overview of the main fields of research in which new and innovative results are obtained. The book is addressed to PhD students and young researchers to provide both an introductory and a rather deep knowledge of the field. It will also be helpful to experienced researcher who want to approach the field in a professional way.
Glow discharge optical emission spectroscopy (GDOES) is an essential technique for the direct analysis of bulk solids, for elemental surface analysis and for the depth profiling of thin films and industrial coatings. The technique has shown rapid growth in numbers of instruments, in breadth of applications, in improved quantification in recent years and is now a recognised technique within the ISO, with two international standards. Glow Discharge Optical Emission Spectroscopy: A Practical Guide takes the reader on a journey through instrument operation, sample preparation, analysis, and reporting results. It follows two sets of samples through the whole process of analysis, brass samples for bulk analysis, and zinc-coated steel for depth profiling. Procedures are consistent with recent ISO standards and each step is loaded with hands-on tips and theoretical insight. The book also includes unique data tables on spectral interferences, molecular bands, self-absorption and relative sputtering rates. This book is designed for those using or managing GDOES instruments and for students interested in learning the technique from a hands-on perspective. It is also an invaluable aid to those considering the purchase of a GDOES instrument, or those using GDOES results, to understand in detail how the technique works and what is involved in maintaining the instrument and achieving high quality results.
Many fundamental aspects of the methods used in mass spectrometry are presented here, with reference to recent developments. The principles and applications of electrospray, ion spray and MALDI ionization technique are included, together with optimised GC/MS interfacing systems and tools for quantitative analysis. There is also a comprehensive treatment of modern instrumentation for mass analysis and detection. The major part of the book deals with bioanalytical applications to peptides, proteins, oligonucleotides, polysaccharides, lipids and plant metabolites. Several contributions are devoted to the evaluation of adduct formation between DNA and carcinogens. Environmental applications are also included, with examples of some specific cases. Fundamentals and applications are treated with the same degree of depth, and the first two parts of the book therefore provide a basis for the understanding of the biomolecular-applications section. The book is intended for advanced graduate students of chemistry who have learned some basic mass spectrometry, and is also suitable for PhD students in chemistry, biology and medicine, as well as researchers in academic and industrial laboratories.
Annual Reports on NMR Spectroscopy, Volume 98, provides an in-depth accounting of progress in nuclear magnetic resonance (NMR) spectroscopy and its many applications. In recent years, no other technique has gained as much significance. It is also used in all branches of science in which precise structural determination is required, and in which the nature of interactions and reactions in solution is being studied. This book has established itself as a premier resource for both specialists and non-specialists who are looking to become familiar with new techniques and applications pertaining to NMR spectroscopy.
The main aim of this unique book is to introduce the student to spectroscopy in a clear manner which avoids, as far as possible, the mathematical aspects of the subject. It is thus intended for first or second year undergraduates, particularly those with minimal mathematics qualifications. After explaining the theory behind spectroscopy, the book then goes on to look at the different techniques, such as rotational, vibrational and electronic spectroscopy. It encompasses both high resolution (structural) and low resolution (analytical) spectroscopy, demonstrating their close interrelationship. The many worked problems make this book particularly appealing for independent study. Ideal for the needs of undergraduate chemistry students, Tutorial Chemistry Texts is a major new series consisting of short, single topic or modular texts concentrating on the fundamental areas of chemistry taught in undergraduate science courses. Each book provides a concise account of the basic principles underlying a given subject, embodying an independent-learning philosophy and including worked examples. |
You may like...
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,257
Discovery Miles 32 570
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, …
Hardcover
R4,020
Discovery Miles 40 200
Encyclopedia of Spectroscopy and…
John C. Lindon, George E. Tranter, …
Hardcover
R59,229
Discovery Miles 592 290
The Encyclopedia of Mass Spectrometry…
Michael L. Gross, Richard M. Caprioli
Hardcover
R10,685
Discovery Miles 106 850
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,294
Discovery Miles 52 940
|