![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
This open access book collects the contributions of the seventh school on Magnetism and Synchrotron Radiation held in Mittelwihr, France, from 7 to 12 October 2018. It starts with an introduction to the physics of modern X-ray sources followed by a general overview of magnetism. Next, light / matter interaction in the X-ray range is covered with emphasis on different types of angular dependence of X-ray absorption spectroscopy and scattering. In the end, two domains where synchrotron radiation-based techniques led to new insights in condensed matter physics, namely spintronics and superconductivity, are discussed. The book is intended for advanced students and researchers to get acquaintance with the basic knowledge of X-ray light sources and to step into synchrotron-based techniques for magnetic studies in condensed matter physics or chemistry.
EPR Spectroscopy in Catalysis, by Sabine Van Doorslaer und Damien M. Murphy Radicals in Flavoproteins, by Erik Schleicher und Stefan Weber EPR Spectroscopy in Polymer Science, by Dariush Hinderberger EPR in Protein Science, by Intrinsically Disordered Proteins, by Malte Drescher Site-Directed Spin Labeling of Membrane Proteins, by Enrica Bordignon Structure and Dynamics of Nucleic Acids, by Ivan Krsti, Burkhard Endeward, Dominik Margraf, Andriy Marko und Thomas F Prisner New Directions in Electron Paramagnetic Resonance Spectroscopy on Molecular Nanomagnets, by J. van Slageren"
High brightness metal vapor lasers have become the most bright and powerful in the visible spectral range among all existing laser types, resulting in numerous applications ranging from purely fundamental research to practical application in large-scale commercial problems such as isotope selection. This book presents a full series of fundamental problems on the development of physical fundamentals and mathematical models for practical realization of a high-power laser radiation on self-contained transitions in metal atoms. It is the first fundamental review on physics and the technique of high-brightness metal vapor lasers.
Two-Dimensional Optical Spectroscopy discusses the principles and applications of newly emerging two-dimensional vibrational and optical spectroscopy techniques. It provides a detailed account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy. It also bridges the gap between the formal development of nonlinear optical spectroscopy and the application of the theory to explain experimental results. Focusing on time-domain spectroscopy, the book presents detailed discussions on the underlying physics and interpretation methods of a variety of two-dimensional optical spectroscopic methods. It illustrates how novel diagrammatic techniques are useful in graphically describing the associated nonlinear optical transition pathways and involved population or coherence evolutions. The author also explains the basics of quantum dynamics and time-dependent perturbation theories that are required in describing nonlinear optical processes. From the development of the theory to novel applications, this book covers a gamut of topics in this field, including perturbation theory, coherent Raman scattering, pump-probe spectroscopy, photon echo spectroscopy, IR-visible four-wave mixing, and linear and nonlinear optical activity spectroscopy. It shows how to apply the recently developed tools of vibrational and electronic spectroscopy in two dimensions.
Over the last decade, scientific and engineering interests have been shifting from conventional ion mobility spectrometry (IMS) to field asymmetric waveform ion mobility spectrometry (FAIMS). Differential Ion Mobility Spectrometry: Nonlinear Ion Transport and Fundamentals of FAIMS explores this new analytical technology that separates and characterizes ions by the difference between their mobility in gases at high and low electric fields. It also covers the novel topics of higher-order differential IMS and IMS with alignment of dipole direction. The book relates the fundamentals of FAIMS and other nonlinear IMS methods to the physics of gas-phase ion transport. It begins with the basics of ion diffusion and mobility in gases, covering the main attributes of conventional IMS that are relevant to all IMS approaches. Building on this foundation, the author reviews diverse high-field transport phenomena that underlie differential IMS. He discusses the conceptual implementation and first-principles optimization of FAIMS as a filtering technique, emphasizing the dependence of FAIMS performance metrics on instrumental parameters and properties of ion species. He also explores ion reactions in FAIMS caused by field heating and the effects of inhomogeneous electric field in curved FAIMS gaps. Written by an accomplished scientist in the field, this state-of-the-art book supplies the foundation to understand the new technology of nonlinear IMS methods.
Summarizing our present knowledge of the structures and chemistry of small organic cations in the gas phase, Assigning Structures to Ions in Mass Spectrometry presents the methods necessary for determining gas-phase ion structures. It is a comprehensive resource of background material that is essential for the interpretation and understanding of organic mass spectra. Following a historical introduction of chief discoveries, the book surveys current experimental methods for ion production and separation as well as those designed to reveal qualitative and quantitative aspects of gas-phase ions. It also examines the computational chemistry and theoretical calculations that provide complementary thermochemical, structural, and mechanistic information. Five selected case studies illustrate specific challenges associated with ion structure assignment and thermochemical problems. The last major section of the book contains the data for describing or identifying all ions containing C alone and C with H, O, N, S, P, halogens, and small organic cations. Presenting material written by leading researchers in the field, Assigning Structures to Ions in Mass Spectrometry underscores the importance of understanding the behavior of small organic ions and gas-phase ion chemistry for making new ion structure assignments
Used primarily for characterizing polymers and biological systems, vibrational spectroscopy continues to uncover structural information pertinent to a growing number of applications. Vibrational Spectroscopy of Biological and Polymeric Materials compiles the latest developments in advanced infrared and Raman spectroscopic techniques that are applicable to both polymeric materials and biological compounds. It also presents instrumentation and experimental details that can be used by polymer chemists and biochemists in the design of their own experiments. The text starts by describing the application of static and dynamic FT-IR spectroscopies to liquid crystalline polyurethanes, including a clear exposition of the theory behind the experiments. It discusses the measurement of static and dynamic linear dichroism and stress or strain in both single and multiple fiber composite materials. The book explains the roles of vibrational spectroscopy and the Langmuir-Blodgett technique in the study and preparation of high-quality ultrathin materials. Chapters rich in both theoretical and experimental details describe two-dimensional correlation spectroscopy and vibrational circular dichroism. Biomedically-oriented chapters describe the advances in IR imaging of tissues made possible by focal-plane arrays; as well as the use of ligand-gated FT-IR difference spectroscopy in neuropharmacology, particularly in identifying ligands and modes of action for the large number of membrane receptors recently identified in the human genome. The final chapter discusses the application of time-resolved FT-IR spectroscopy to biological materials, providing a detailed guide to the use of commercial step-scan instrumentation for examining sub-millisecond mechanistic details of photobiological processes. Written by eminent experts in these fields, Vibrational Spectroscopy of Biological and Polymeric Materials is an ideal and practical reference for the broad spectrum of researchers interested in the analysis and integration of biological and polymeric materials.
Photoelectron Spectroscopy presents an up-to-date introduction to the field by comprehensively treating the electronic structures of atoms, molecules, solids, and surfaces. Brief descriptions are given of inverse photoemission, spin-polarized photoemission and photoelectron diffraction. Experimental aspects are considered throughout the book and the results are carefully interpreted in terms of the theory. A wealth of measured data is presented in tabular form for easy use by experimentalists. This new edition has been substantially updated and extended.
Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological Systems Although a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet. A Must-Have Reference in an Intrinsically Multidisciplinary Field This authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do's and don'ts that are based on the author's 30 years of experience in the field. The book also comes with an unprecedented set of supporting software designed with simple graphical user interfaces that allow readers to tackle problems they will likely encounter when engaged in spectral analysis. Breaking with convention, the book broaches quantum mechanics from the perspective of biological relevance, emphasizing low-symmetry systems. This is a necessary approach since paramagnets in biomolecules typically have no symmetry. Where key topics related to quantum mechanics are addressed, the book offers a rigorous treatment in a style that is quick-to-grasp for the non expert. Biomolecular EPR Spectroscopy is a practical, all-inclusive reference sure to become the industry standard.
A constructive evaluation of the most significant developments in liquid chromatography-mass spectrometry (LC-MS) and its uses for quantitative bioanalysis and characterization for a diverse range of disciplines, Liquid Chromatography-Mass Spectrometry, Third Edition offers a well-rounded coverage of the latest technological developments and applications. As the technology itself has matured into a reliable analytical method over the last 15 years, the most exciting developments occur in LC-MS augments research into new applications. This edition places a stronger emphasis than previous editions on the impact of LC-MS methods, dedicating two-thirds of the text to small-molecule and biomolecular applications such as proteomics, pharmaceutical drug discovery and development, biochemistry, clinical analysis, environmental studies, and natural products research. Supported by the most relevant literature available, each chapter examines how the strategies, technologies, and recent advances-from sample pretreatment to data processing-in LC-MS helped to shape these disciplines. Featuring new chapters and extensive revisions throughout the book, Liquid Chromatography-Mass Spectrometry, Third Edition continues to provide scientists with a definitive guide and reference to the most important principles, strategies, and experimental precedents for applying LC-MS to their research.
New insights into modern medicine and systems biology are enabled by innovative protocols and advanced technologies in mass spectrometry-based proteomics. This volume details new pipelines, workflows, and ways to process data that allow for new frontiers in proteomics to be pushed forward. With applications to biomarker discovery, interactions between proteins, between biological systems, dynamics of post-translational modifications among others, new protocols have been developed and iteratively refined to probe the endless complexity of the proteome in ever greater details. This volume deals with methods for data dependent and data independent mass spectrometry analyses. Valuable, first-hand information is provided from designing experiments, sample preparation and analysis, exploitation of public datasets and carrying out reproducible data pipelines, using modern computational tools such as Galaxy or Jupyter. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Mass Spectrometry of Proteins: Methods and Protocols aims to ensure successful results in the further study of this vital field.
Food contains various compounds and many technologies exist to analyze those molecules of interest. However, the analysis of the spatial distribution of those compounds using conventional technology, such as liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry is difficult. Mass spectrometry imaging (MSI) is a mass spectrometry technique to visualize the spatial distribution of molecules, as biomarkers, metabolites, peptides or proteins by their molecular masses. Despite the fact that MSI has been generally considered a qualitative method, the signal generated by this technique is proportional to the relative abundance of the analyte and so quantification is possible. Mass Spectrometry Imaging in Food Analysis, a volume in the Food Analysis and Properties Series, explains how the novel use of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) will be an ideal complementary approach. MALDI-MSI is a two-dimensional MALDI-MS technology that can detect compounds in a tissue section without extraction, purification, separation, or labeling. It can be used to visualize the spatial distribution of biomolecules in foods. Features: Explains the novel use of matrix-assisted laser desorption/ionization mass spectrometry imaging in food analysis Describes how MALDI-MSI will be a useful technique for optical quality assurance. Shows how MALDI-MSI detects food contaminants and residues Covers the historical development of the technology While there are a multitude of books on mass spectrometry, none focus on food applications and thus this book is ideally suited to food scientists, food industry personnel engaged in product development, research institutions, and universities active in food analysis or chemical analysis. Also available in the Food Analysis and Properties Series: Food Aroma Evolution: During Food Processing, Cooking, and Aging, edited by Matteo Bordiga and Leo M.L. Nollet (ISBN: 9781138338241) Ambient Mass Spectroscopy Techniques in Food and the Environment, edited by Leo M.L. Nollet and Basil K. Munjanja (ISBN: 9781138505568) Hyperspectral Imaging Analysis and Applications for Food Quality, edited by N.C. Basantia, Leo M.L. Nollet, and Mohammed Kamruzzaman (ISBN: 9781138630796) For a complete list of books in this series, please visit our website at: www.crcpress.com/Food-Analysis--Properties/book-series/CRCFOODANPRO
The book highlights the current practices and future trends in structural characterization of impurities and degradants. It begins with an overview of mass spectrometry techniques as related to the analysis of impurities and degradants, followed by studies involving characterization of process related impurities (including potential genotoxic impurities), and excipient related impurities in formulated products. Both general practitioners in pharmaceutical research and specialists in analytical chemistry field will benefit from this book that will detail step-by-step approaches and new strategies to solve challenging problems related to pharmaceutical research.
A single-source reference describing how and why gas chromatography and mass spectrometry instruments work. Describes a wide range of technologies and offers guidance for their optimum use, outlining good practice, routine procedures, and trouble shooting.
Describes several specific spectrometric techniques that are very useful in elucidating the fundamental nature of matter: EXAFS--Extended X-Ray Absorption of Fine Structure; SEXAFS--which is EXAFS applied to Surface Phenomena; and XANES--X-Ray Absorption Near Edge Structures. Articles explain the phenomena and describe examples of X-ray absorption applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X-ray absorption experiments, and how to analyze the details of the resulting spectra. This volume will be of particular interest to physicists, chemists, biologists, and materials scientists.
Spectroscopic Techniques and Hindered Molecular Motion presents a united, theoretical approach to studying classical local thermal motion of small molecules and molecular fragments in crystals by spectroscopic techniques. Mono- and polycrystalline case studies demonstrate performance validity. The book focuses on small molecules and molecular fragments, such as N2, HCl, CO2, CH4, H2O, NH4, BeF4, NH3, CH2, CH3, C6H6, SF6, and other symmetrical atomic formations, which exhibit local hindered motion in molecular condensed media: molecular and ionic crystals, molecular liquids, liquid crystals, polymeric solids, and biological objects. It reviews the state of studying the hindered molecular motion (HMM) phenomenon and the experimental works on the basis of the latest theoretical research. Case Studies Physical models of hindered molecular motion General solution of the stochastic problem for the hindered molecular motion in crystals Formulae of the angular autocorrelation function symmetrized on the crystallographic point symmetry groups Formulae of the spectral line shapes concerning the dielectric, infrared, Raman, nuclear magnetic relaxation, and neutron scattering spectroscopy in the presence of the hindered molecular motion Experimental probation of the theoretical outcomes Proton relaxation in three-atomic molecular fragments undergoing axial symmetry hindered motion Structural distortion in the ordered phase of crystalline ammonium chloride Organic compounds, polymers, pharmaceutical products, and biological systems consist of the molecular fragments, which possess rotational or conformational degrees of freedom or an atomic exchange within the fragme
Recent advances in both experimental techniques and theoretical methodologies have meant that increasingly sophisticated studies concerning the formation, structures, energetics and reaction dynamics of state- or energy-selected molecular ions can now be performed. In order to better serve the ion chemistry and physics community, each volume of this series is dedicated to reviewing a specific topic, emphasizing new experimental and theoretical developments in the study of ions. The Wiley Series in Ion Chemistry and Physics will help stimulate new research directions and point to future opportunities in the field of ion chemistry and physics. This volume, the sixth in the series, concentrates on the area of large ions. The production, detection and analysis of large ions are areas which have taken on great importance in recent years, in particular in the biomedical and biochemical fields. The understanding of large ions presents unique and formidable challenges which are very different from those associated with the study of small ions. This volume focuses on some of the fundamental chemistry and physics associated with the behavior of large ions, with the contributors addressing the issues in a quantitative fashion, in order to elucidate clearly some of the key recent advances which have taken place. As such, Large Ions: Their Vaporization, Detection and Structural Analysis provides an excellent snapshot of current research in this fascinating and important area. The six chapters are written by some of the leading experts in the field, and together they will be of great interest to experts and newcomers, both of whom will benefit from the in-depth discussion of the latest methods and results.
Nuclear magnetic resonance (NMR) is widely used across many fields of science because of the rich data it produces, and some of the most valuable data come from studies of nuclear spin relaxation in solution. The first edition of this book, published more than a decade ago, provided an accessible and cohesive treatment of the field. The present second edition is a significant update, covering important new developments in recent years. Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure and special topics such as relaxation in systems with quadrupolar nuclei, in paramagnetic systems and in long-living spin states. Avoiding overly demanding mathematics, the authors explain spin relaxation in a manner that anyone with a familiarity with NMR can follow. The focus is on illustrating and explaining the physical nature of relaxation phenomena. Nuclear Spin Relaxation in Liquids: Theory, Experiments and Applications, 2nd Edition, provides useful supplementary reading for graduate students and is a valuable reference for NMR spectroscopists, whether in chemistry, physics or biochemistry.
Tandem Techniques Raymond P. W. Scott Chemistry Department, Georgetown University, Washington DC, USA and Chemistry Department, Birkbeck College, University of London, UK Analytical techniques based on separation processes, such as chromatography and electrophoresis, are finding a growing range of applications in chemical, pharmaceutical and clinical laboratories. The Wiley Separation Science Series provides the analyst in these laboratories with well focused books covering individual techniques, so that they can be applied more efficiently and effectively to contemporary analytical problems. Tandem Techniques describes the function and uses of instruments that comprise the combination of a separation technique (e.g. chromatography) with an identifying technique, (e.g. spectroscopy) for the rapid separation and identification of the components of complex mixtures. The basic principles of the commonly used separation techniques (i.e. gas chromatography, liquid chromatography, thin layer chromatography and capillary electrophoresis) are discussed, together with the basic principles of the spectroscopic techniques employed with them. The book is divided into four sections; the first dealing with the fundamental principles of separation and identification techniques; the second with gas chromatography tandem systems; the third with tandem systems associated with liquid chromatography and similar separation techniques; the fourth section with tandem instruments combined with capillary electrophoresis. The various interfaces involved are discussed and described in detail and, where possible, comparative performance data is presented particularly with respect to system sensitivity. The morerecent developments in the different techniques are included incorporating references published up to mid 1996. Tandem Techniques will be an essential handbook for all chemists involved in general analysis product assay and environmental monitoring. It will be particularly useful to those scientists concerned with the many and varied aspects of separation science.
This book details chiroptical spectroscopic methods: electronic circular dichroism (ECD), optical rotatory dispersion (ORD), vibrational circular dichroism (VCD), and vibrational Raman optical activity (VROA). For each technique, the text presents experimental methods for measurements and theoretical methods for analyzing the experimental data. It also includes a set of experiments that can be adopted for undergraduate teaching laboratories. Each chapter is written in an easy-to-follow format for novice readers, with necessary theoretical formalism in appendices for advanced readers.
This book is a comprehensive guide to the theory of optical band shape of guest-molecule-doped crystals, polymers and glasses. The dynamics of a single molecule, measured with the help of a train of photons emitted at random time moments, is a main subject of the book. The dynamics is calculated with the help of quantum-mechanical methods and equations for the density matrix of the system consisting of a single chromophore interacting with light, phonons and non-equilibrium tunneling systems of polymers and glasses. A dynamical theory for one- and two-photon counting methods used in single molecule spectroscopy is presented. Photon bunching and antibunching, jumps of optical lines, and quantum trajectories of various types are further topics addressed. This is the first book to present a detailed theoretical basis for single molecule spectroscopy. It also describes numerous experimental applications of the theory.
Selecting illustrative examples from the recent literature, this reference studies the underlying principles and physics of a wide range of spectroscopic techniques utilized in the pharmaceutical sciences and demonstrates various applications for each method analyzed in the text-showing how knowledge of the mechanisms of spectroscopic phenomena may facilitate more advanced technologies in the field.
The first hands-on guide to XRD and XRF sampling and specimen preparation Systematic errors from poor sampling and improper specimen preparation can easily render X-ray diffraction (XRD) and X-ray fluorescence (XRF) data of questionable use for analysis. But, until now, the practical information that can help to reduce these errors has never been readily available in one volume. This book fills a vital gap in the literature, bringing together a wealth of material previously available only in workbooks, company manuals, and other inside sources. It provides detailed coverage of the major tasks involved in X-ray analysis — complete with theory, step-by-step methods, equipment suggestions, and problem-solving tips. With a full complement of tools and techniques, this comprehensive guide helps both beginners and experienced analysts to make the best decision on sample treatment and get accurate XRD and XRF results—saving valuable time, money, and effort. Covers X-ray techniques for analyzing biological, geological, metallic, ceramic, and other materials
Laser spectroscopy has been perfected over the last fifteen years to become a precise tool for the investigation of highly vibrationally excited molecules. Intense infrared laser radiation permits both the multiple-photon resonant excitation and the dissociation of polyatomic molecules. In this book, the latest results of some of the foremost Soviet researchers are published for the first time in the West. Laser Spectroscopy of Highly Vibrationally Excited Molecules contains a comprehensive study of both the experimental and theoretical aspects of the basic photophysical interactions that occur in these processes. The book first focuses on the nonlinear interaction between the resonant vibrational mode and the intense infrared field and then examines the nonlinear interaction between the vibrational modes themselves due to anharmonicity. These interrelated processes determine all the characteristics of polyatomic molecules in an infrared field. The book also discusses related phenomena such as spectra broadening, optical resonance, photon echoes, and dynamical chaos. It includes examples of multiple-photon resonant excitation such as the excitation of OsO4 by CO^O2 laser radiation, which is detected by the visible luminescence that results. This book will be of great interest to researchers and postgraduate students in infrared laser spectroscopy and the laser chemistry of molecules and applications of isotope separation. |
![]() ![]() You may like...
Analytical Atomic Absorption…
Alfredo Sanz-Medel, Rosario Pereiro
Hardcover
R1,572
Discovery Miles 15 720
Encyclopedia of Spectroscopy and…
John C. Lindon, George E. Tranter, …
Hardcover
R61,726
Discovery Miles 617 260
Flavor of Dairy Products
Keith R. Cadwallader, Mary Anne Drake, …
Hardcover
R2,332
Discovery Miles 23 320
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,372
Discovery Miles 33 720
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,496
Discovery Miles 54 960
|