![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
This volume comprises the proceedings of the 15th International Mass Spectrometry Conference held in Barcelona, attended by over 1100 registered delegates from 38 countries. Because the applications of mass spectrometry to biochemistry, biology and medicine have become a very important source of activity in the field these areas are very well represented in the content of this volume. However the importance of fundamental research and instrumental and methodology developments to all applications is also highlighted. The book is divided into five sections: · Fundamentals · Biological/Biochemical Applications, · Instrumentation and Ionization · Analytical Organic Mass Spectrometry · Inorganic Mass Spectrometry These five sections consist of full papers from the excellent plenary and keynote speakers together with abstracts of more than 300 oral and poster contributions from the total of 701 presented at the conference. The selection reflects the present state-of-the art in the field of mass spectrometry.
Remarkable developments in the spectroscopy field regarding ultrashort pulse generation have led to the possibility of producing light pulses ranging from 50 to5 fs and frequency tunable from the near infrared to the ultraviolet range. Such pulses enable us to follow the coupling of vibrational motion to the electronic transitions in molecules and solids in real time. Detailing these advanced developments, as well as the fundamental methods and tools of vibrational spectroscopy, Coherent Vibrational Dynamics providesresearchers and students with a uniquely comprehensive resource. With the contributions of pioneering scientists, this seminal volume - * Outlines the principles and tools used on time-domain vibrational spectroscopy and provides a general introduction to the subject of coherent phonons * Describes the modern methods for tunable ultrashort pulse generation from infrared to visible-UV * Reviews coherent vibrational dynamics in small molecules in liquids (hydrogen bonds), and in carbon based conjugated materials (polyenes, carotenoids, and semiconducting polymers) * Explores phonon dynamics in semiconductors (bulk and heterostructures) and in quasi-one-dimensional systems Supplemented with a great number of references, and covering fundamental as well advanced topics, this text provides a valuable reference for both graduate students and senior researchers investigating materials in physics, chemistry, and biology. It is also an excellent starting point for those who want to pursue research in the field of ultrafast optics and spectroscopy.
Stimulated by the increasing importance of chiral molecules as pharmaceuticals and the need for enantiomerically pure drugs, techniques in chiral chemistry have been expanded and refined, especially in the areas of chromatography, asymmetric synthesis, and spectroscopic methods for chiral molecule structural characterization. In addition to synthetic chiral molecules, naturally occurring molecules, which are invariably chiral and generally enantiomerically enriched, are of potential interest as leads for new drugs. VCD Spectroscopy for Organic Chemists discusses the applications of vibrational circular dichroism (VCD) spectroscopy to the structural characterization of chiral organic molecules. The book provides all of the information about VCD spectroscopy that an organic chemist needs in order to make use of the technique. The authors, experts responsible for much of the existing literature in this field, discuss the experimental measurement of VCD and the theoretical prediction of VCD. In addition, they evaluate the advantages and limitations of the technique in determining molecular structure. Given the availability of commercial VCD instrumentation and quantum chemistry software, it became possible in the late 1990s for chemists to use VCD in elucidating the stereochemistries of chiral organic molecules. This book helps organic chemists become more aware of the utility of VCD spectroscopy and provides them with sufficient knowledge to incorporate the technique into their own research.
Spectroscopic Techniques and Hindered Molecular Motion presents a united, theoretical approach to studying classical local thermal motion of small molecules and molecular fragments in crystals by spectroscopic techniques. Mono- and polycrystalline case studies demonstrate performance validity. The book focuses on small molecules and molecular fragments, such as N2, HCl, CO2, CH4, H2O, NH4, BeF4, NH3, CH2, CH3, C6H6, SF6, and other symmetrical atomic formations, which exhibit local hindered motion in molecular condensed media: molecular and ionic crystals, molecular liquids, liquid crystals, polymeric solids, and biological objects. It reviews the state of studying the hindered molecular motion (HMM) phenomenon and the experimental works on the basis of the latest theoretical research. Case Studies Physical models of hindered molecular motion General solution of the stochastic problem for the hindered molecular motion in crystals Formulae of the angular autocorrelation function symmetrized on the crystallographic point symmetry groups Formulae of the spectral line shapes concerning the dielectric, infrared, Raman, nuclear magnetic relaxation, and neutron scattering spectroscopy in the presence of the hindered molecular motion Experimental probation of the theoretical outcomes Proton relaxation in three-atomic molecular fragments undergoing axial symmetry hindered motion Structural distortion in the ordered phase of crystalline ammonium chloride Organic compounds, polymers, pharmaceutical products, and biological systems consist of the molecular fragments, which possess rotational or conformational degrees of freedom or an atomic exchange within the fragme
Over the past decade, a myriad of techniques have shown that solid-state nuclear magnetic resonance (NMR) can be used in a broad spectrum of applications with exceptionally impressive results. Solid-state NMR results can yield high-resolution details on the structure and function of many important biological solids, including viruses, fibril-forming molecules, and molecules embedded in the cell membrane. Filling a void in the current literature, NMR Spectroscopy of Biological Solids examines all the recent developments, implementation, and interpretation of solid-state NMR experiments and the advantages of applying them to biological systems. The book emphasizes how these techniques can be used to realize the structure of non-crystalline systems of any size. It explains how these isotropic and anisotropic couplings interactions are used to determine atomic-level structures of biological molecules in a non-soluble state and extrapolate the three-dimensional structure of membrane proteins using magic-angle spinning (MAS). The book also focuses on the use of multidimensional solid-state NMR methods in the study of aligned systems to provide basic information about the mechanisms of action of a variety of biologically active molecules. Addressing principles, methods, and applications, this book provides a critical selection of solid-state NMR methods for solving a wide range of practical problems that arise in both academic and industrial research of biomolecules in the solid state. NMR Spectroscopy of Biological Solids is a forward-thinking resource for students and researchers in analytical chemistry, bioengineering, material sciences, and structural genomics.
This volume details the principles and instrumentation of gas chromatography-mass spectrometry (CG-MS), and outlines industrial, environmental, pharmaceutical, clinical, toxicological, forensic and food-related applications, revealing findings from the laboratories of 40 contributing scientists around the world using GC-MS in practice. It describes upstream and downstream applications of GC-MS in the petroleum industry and identifies chlorinated compounds in the environment with quadrupole ion-trap technology and high-resolution sector instruments.
In virtually all types of experiments in which a response is analyzed as a function of frequency (e. g., a spectrum), transform techniques can significantly improve data acquisition and/or data reduct ion. Research-level nuclear magnet ic resonance and infra-red spectra are already obtained almost exclusively by Fourier transform methods, because Fourier transform NMR and IR spectrometers have been commercially available since the late 1960.s. Similar transform techniques are equally valuable (but less well-known) for a wide range of other chemical applications for which commercial instruments are only now becoming available: for example, the first corrmercial Fourier transform mass spectrometer was introduced this year (1981) by Nicolet Instrument Corporation. The purpose of this volume is to acquaint practicing chemists with the basis, advantages, and applica of Fourier, Hadamard, and Hilbert transforms in chemistry. For tions almost all chapters, the author is the investigator who was the first to apply such methods in that field. The basis and advantages of transform techniques are described in Chapter 1. Many of these aspects were understood and first applied by infrared astronomers in the 1950.s, in order to improve the otherwise unacceptably poor signal-to-noise ratio of their spec tra. However, the computations required to reduce the data were painfully slow, and required a 1 arge computer."
NMR spectroscopy has undergone a revolution in recent years with the advent of several new methods overcoming the problems of sensitivity and resolution. Recent developments in biotechnology have made it easier and economical to introduce 13C, 15N and 2H into proteins and nucleic acids. At the same time, there has been an explosion in the number of NMR experiments that utilize such isotope labeled samples. Thus, a combination of isotopic labeling and multidimensional, multinuclear NMR has opened up new avenues for structural studies of proteins, nucleic acids and their complexes. This book will focus on recent developments in isotope labeling methods for structural studies of small molecules, peptides, proteins and nucleic acids. The aim of the book is to serve as a compendium of isotope labeling for the biomolecular NMR community providing comprehensive coverage of the existing methods and latest developments along with protocols and practical hints on the various experimental aspects. The book will cover a wide range of topics in isotope labeling under one title including emerging areas of metabolonomics and solid state NMR.
A teaching tool intended to complement existing books on the theory of materials science, metallurgy, and electron microscopy, this text focuses on metals and alloys. It visualizes key structural elements common to crystalline materials, including crystal lattice imperfections, along with the principles and steps involved in the microstructure development in metallic materials under external influences. Designed as an atlas, Microstructure of Metals and Alloys contains a collection of carefully selected original transmission electron microscope (TEM) micrographs taken by the authors. These images demonstrate typical crystal lattice defects, elements of the microstructure of metals and alloys, and the basic processes occurring to the crystal structure during plastic deformation, polygonization, recrystallization, and rapid solidification. The book is organized into six chapters. Each deals with a particular problem in the field of physical metallurgy, and begins with a description of the basic concept and terms. These descriptions enable readers to achieve a better understanding of the essential issues relevant to specific challenges. Providing comprehensive, illustrative coverage of the basic topics in materials science, this important work emphasizes fundamental principles over specific materials, in a manner that is fully consistent with the contemporary tendency in materials science teaching.
Second Edition provides up-to-the-minute discussions on the application of mass spectrometry to the biological sciences. Shows how and why experiments are performed and furnishes details to facilitate duplication of results.
This book offers an elementary introduction to optical spectroscopy
with polarized light. It is written at a level suitable for
undergraduate students in chemistry and undergraduate or graduate
students in related disciplines such as biochemistry, biology,
chemical engineering and materials science. It emphasizes the
qualitative concepts and deemphasizes mathematics, yet provides
sufficient information and practical hints for experiments.
Protein NMR Spectroscopy combines a comprehensive theoretical
treatment of NMR spectroscopy with an extensive exposition of the
experimental techniques applicable to proteins and other biological
macromolecules in solution. Beginning with simple theoretical
models and experimental techniques, Protein NMR Spectroscopy
develops the complete repertoire of theoretical principles and
experimental techniques necessary for understanding and
implementing the most sophisticated NMR experiments.
Optical Spectroscopy of Lanthanides: Magnetic and Hyperfine Interactions represents the sixth and final book by the late Brian Wybourne, an accomplished pioneer in the spectroscopy of rare earth ions, and Lidia Smentek, a leading theoretical physicist in the field. The book provides a definitive and up-to-date theoretical description of spectroscopic properties of lanthanides doped in various materials. The book integrates computer-assisted calculations developed since Wybourne's classic publication on the topic. It contains useful Maple (TM) routines, discussions, and new aspects of the theory of f-electron systems. Establishing a unified basis for understanding state-of-the-art applications and techniques used in the field, the book reviews fundamentals based on Wybourne's graduate lectures, which include the theory of nuclei, the theory of angular momentum, Racah algebra, and effective tensor operators. It then describes magnetic and hyperfine interactions and their impact on the energy structure and transition amplitudes of the lanthanide ions. The text culminates with a relativistic description of f f electric and magnetic dipole transitions, covering sensitized luminescence and a new parametrization scheme of f-spectra. Optical Spectroscopy of Lanthanides enables scientists to construct accurate and reliable theoretical models to elucidate lanthanides and their properties. This text is ideal for exploring a range of lanthanide applications including electronic data storage, lasers, superconductors, medicine, nuclear engineering, and nanomaterials.
This book shows the electronic, optical and lattice-vibration properties of the two-dimensional materials which are revealed by the Raman spectroscopy. It consists of eleven chapters covering various Raman spectroscopy techniques (ultralow-frequency, resonant Raman spectroscopy, Raman imaging), different kinds of two-dimensional materials (in-plane isotropy and anisotropy materials, van der Waals heterostructures) and their physical properties (double-resonant theory, surface and interface effect). The topics include the theory origin, experimental phenomenon and advanced techniques in this area. This book is interesting and useful to a wide readership in various fields of condensed matter physics, materials science and engineering.
Presents chemical state imaging methods useful on distance scales ranging from individual atoms to millimeters. This work is intended for chemists familiar with modern spectroscopies, but includes tutorial material on basic imaging processes for those with little background in the field.
This practical and unique textbook explains the core areas of molecular spectroscopy as a classical teacher would. The author carefully explores and explains each concept, walking side by side with the student through carefully constructed text, pedagogy, and derivations to ensure comprehension of the basics before approaching higher level topics. The author incorporates both electric resonance and magnetic resonance in the textbook. Uses boxes to explain more difficult topics and provides derivations to demonstrate "how and why". Includes coverage of electronic and NMR spectroscopy, both in sufficient detail. Discusses the density matrix method and its use in electronic spectroscopy before addressing it in NMR. Includes a chapter on Vibrational and Rotational Coherence Spectroscopy. Each chapter ends with problems with varying level of difficulty.
A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscopy and then moves on to examine the background of the orientation method of colloid suspensions in a nematic host. It explores the orientation procedure itself, experimental design, and mathematical tools for the interpretation of the IR spectroscopic patterns. Next, the authors describe the structural elucidation of inorganic and organic compounds and glasses. Finally, they discuss applications in pharmaceutical analysis and the chemistry of dyes. Filled with more than 140 illustrations along with a color insert, the book explains both the scope of the polarized IR spectroscopy method as well as its limitations. A powerful source of information not only for specialists in IR spectroscopy, but also for those working in the field of structural analysis, this volume moves the field closer to developing an inherently classical method for the structural characterization of compounds.
Scanning transmission electron microscopy has become a mainstream technique for imaging and analysis at atomic resolution and sensitivity, and the authors of this book are widely credited with bringing the field to its present popularity. Scanning Transmission Electron Microscopy(STEM): Imaging and Analysis will provide a comprehensive explanation of the theory and practice of STEM from introductory to advanced levels, covering the instrument, image formation and scattering theory, and definition and measurement of resolution for both imaging and analysis. The authors will present examples of the use of combined imaging and spectroscopy for solving materials problems in a variety of fields, including condensed matter physics, materials science, catalysis, biology, and nanoscience. Therefore this will be a comprehensive reference for those working in applied fields wishing to use the technique, for graduate students learning microscopy for the first time, and for specialists in other fields of microscopy.
"Solid-State Theory - An Introduction" is a textbook for graduate students of physics and material sciences. Whilst covering the traditional topics of older textbooks, it also takes up new developments in theoretical concepts and materials that are connected with such breakthroughs as the quantum-Hall effects, the high-Tc superconductors, and the low-dimensional systems realized in solids. Thus besides providing the fundamental concepts to describe the physics of the electrons and ions comprising the solid, including their interactions, the book casts a bridge to the experimental facts and gives the reader an excellent insight into current research fields. A compilation of problems makes the book especially valuable to both students and teachers.
Stimulated by the increasing importance of chiral molecules as pharmaceuticals and the need for enantiomerically pure drugs, techniques in chiral chemistry have been expanded and refined, especially in the areas of chromatography, asymmetric synthesis, and spectroscopic methods for chiral molecule structural characterization. In addition to synthetic chiral molecules, naturally occurring molecules, which are invariably chiral and generally enantiomerically enriched, are of potential interest as leads for new drugs. VCD Spectroscopy for Organic Chemists discusses the applications of vibrational circular dichroism (VCD) spectroscopy to the structural characterization of chiral organic molecules. The book provides all of the information about VCD spectroscopy that an organic chemist needs in order to make use of the technique. The authors, experts responsible for much of the existing literature in this field, discuss the experimental measurement of VCD and the theoretical prediction of VCD. In addition, they evaluate the advantages and limitations of the technique in determining molecular structure. Given the availability of commercial VCD instrumentation and quantum chemistry software, it became possible in the late 1990s for chemists to use VCD in elucidating the stereochemistries of chiral organic molecules. This book helps organic chemists become more aware of the utility of VCD spectroscopy and provides them with sufficient knowledge to incorporate the technique into their own research.
This volume on Ultrafast Magnetism is a collection of articles presented at the international "Ultrafast Magnetization Conference" held at the Congress Center in Strasbourg, France, from October 28th to November 1st, 2013. This first conference, which is intended to be held every two years, received a wonderful attendance and gathered scientists from 27 countries in the field of Femtomagnetism, encompassing many theoretical and experimental research subjects related to the spins dynamics in bulk or nanostructured materials. The participants appreciated this unique opportunity for discussing new ideas and debating on various physical interpretations of the reported phenomena. The format of a single session with many oral contributions as well as extensive time for poster presentations allowed researchers to have a detailed overview of the field. Importantly, one could sense that, in addition to studying fundamental magnetic phenomena, ultrafast magnetism has entered in a phase where applied physics and engineering are playing an important role. Several devices are being proposed with exciting R&D perspectives in the near future, in particular for magnetic recording, time resolved magnetic imaging and spin polarized transport, therefore establishing connections between various aspects of modern magnetism. Simultaneously, the diversity of techniques and experimental configurations has flourished during the past years, employing in particular Xrays, visible, infra-red and terahertz radiations. It was also obvious that an important effort is being made for tracking the dynamics of spins and magnetic domains at the nanometer scale, opening the pathway to exciting future developments. The concerted efforts between theoretical and experimental approaches for explaining the dynamical behaviors of angular momentum and energy levels, on different classes of magnetic materials, are worth pointing out. Finally it was unanimously recognized that the quality of the scientific oral and poster presentations contributed to bring the conference to a very high international standard.
This book is an essential reference guide to spectroscopic, physical and biological activity data of over 3500 steroid glycosides, offering the structures and the data of the naturally occurring glycosides of steroids. All compounds are arranged according to the structure of the aglycone, and, in its own class, by the increasing molecular weight, making Spectroscopic Data of Steroid Glycosides extremely useful for the structure elucidation of new natural products, particularly glycosides.
This book is an essential reference guide to spectroscopic, physical and biological activity data of over 3500 steroid glycosides, offering the structures and the data of the naturally occurring glycosides of steroids. All compounds are arranged according to the structure of the aglycone, and, in its own class, by the increasing molecular weight, making Spectroscopic Data of Steroid Glycosides extremely useful for the structure elucidation of new natural products, particularly glycosides.
Polymer Surfaces and Interfaces II W. J. Feast, University of Durham, Durham, UK H. S. Munro, Courtaulds Research, Coventry, UK R. W. Richards, University of Durham, Durham, UK This volume presents a collection of review papers, based on the a Polymer Surfaces and Interfaces II International Symposiuma which took place in Durham (UK), July 1991 Compiled here, the papers present an authoritative overview of current technology and research on polymer surfaces, by acknowledged experts in their specialist fields. Individual reviews cover analytical techniques, properties, reactions, modelling and synthesis of surfaces and interfaces. Polymer Surfaces and Interfaces II will be of interest to polymer scientists, surface scientists, chemists, physicists and biologists, working in industrial and academic laboratories. Reviews of the previous volume a Altogether a most useful addition to polymer sciencea ---- Physics Bulletin a The book can be unreservedly recommended to chemists and materials scientists with an interest in adhesion, biomaterials, polymer dispersions and molecular engineeringa ---- Polymer Contents Surface Chemistry of Chemically Resistant Polymers; T. G. Bee, A. J. Dias, N. L. Franchina, B. U. Kolb, K.--W. Lee, P. A. Patton, M. S. Shoichet and T. J. McCarthy Self--assembled Molecular Films as Polymer Surface Models; D. L. Allara, S. V. Atre and A. N. Parikh Non--equilibrium Effects in Polymeric Stabilization; M. E. Cates and J. T. Brooks Ion Beam Analysis of Composition Profiles near Polymer Surfaces and Interfaces; R. A. L. Jones Laser Light Scattering; J. C. Earnshaw Characterization of Interfaces in Polymers and Composites using Raman Spectroscopy; R. J. Young Surface Modification and Analysis of Ultra--high--modulus Polyethylene Fibres for Composites; G. A. George SSIMS ---- An Emeriging Technique for the Surface Chemical Analysis of Polymeric Biomaterials; M. C. Davies Scanning Probe Microscopy ---- Current Issues in the Analysis of Polymeric Biomaterials; M. C. Davies, D. E. Jackson, C. J Roberts, S. J. B. Tendler, K. M. Kreusel, M. J. Wilkins and P. M. Williams Surface Grafting of a Thrombin Substrate on a Polymer Membrane and the Inhibition of Thrombin Activity Leading to Non--thrombogenicity; Y. Ito, L.--S. Liu and Y. Imanishi Acid----Base Effects at Polymer Interfaces; C. J. van Oss
This book is a comprehensive summary of 50 years of research from theoretical predictions to experimental confirmation of the manifestation of spin exchange in EPR spectroscopy. The author unfolds the details of comprehensive state of the art of theoretical calculations, which have been proven to become the core of the paradigm shift in spin exchange and set the direction for the future of spin exchange research. The book refers to important experimental data that confirms the theory. It describes the modern protocol for determining the bi-molecular spin exchange rate from the EPR spectra, which will be especially interesting for experimentalists. Given its scope, the book will benefit all researchers engaged in theory and experiments in the area of spin exchange and its manifestations in EPR spectroscopy, where many remarkable applications of the spin probe have been developed. |
![]() ![]() You may like...
NMR Spectroscopy in the Undergraduate…
David Soulsby, Laura J. Anna, …
Hardcover
R5,018
Discovery Miles 50 180
Photoacoustic and Photothermal…
Surya N. Thakur, Virendra N. Rai, …
Paperback
R4,582
Discovery Miles 45 820
Flavor of Dairy Products
Keith R. Cadwallader, Mary Anne Drake, …
Hardcover
R2,332
Discovery Miles 23 320
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,496
Discovery Miles 54 960
|