![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
The dielectric properties especially of glassy materials are nowadays explored at widely varying temperatures and pressures without any gap in the spectral range from Hz up to the Infrared, thus covering typically 20 decades or more. This extraordinary span enables to trace the scaling and the mutual interactions of relaxation processes in detail, e.g. the dynamic glass transition and secondary relaxations, but as well far infrared vibrations, like the Boson peak. Additionally the evolution of intra-molecular interactions in the course of the dynamic glass transition is also well explored by (Fourier Transform) Infrared Spectroscopy. This volume within 'Advances in Dielectrics' summarizes this knowledge and discusses it with respect to the existing and often competing theoretical concepts.
This is the first book devoted to the use of X-ray beam techniques to study magnetic properties of materials. It covers both experimental and theoretical issues. The three main topics are dichroism, elastic scattering (both non-resonant and resonant diffraction) and spectroscopy. In the past decade there has been an expansion of activity in the field, driven by the availability of intense, tuneable and highly polarized X-ray beams from synchrtron facilities. The pace of events is likely to continue with the start of new (3rd generation) facilities, including the European Synchrotron Radiation Facility, Grenoble, and the Advanced Light Source, Argonne National Laboratory. USA.
This volume contains invited and contributed papers at the conference on Microscopy of Semiconducting Materials which took place on 21-23 March 1983 in St Cathernine's College, Oxford. The conference was the third in the series devoted to advances in microscopical studies of semiconductors.
This book is loosely based on a Multidisciplinary University Research Initiative (MURI) project and a few supplemental projects sponsored by the Of?ce of Naval Research (ONR) during the time frame of 2004-2009. The initial technical scope and vision of the MURI project was formulated by Drs. Larry Cooper and Joel Davis, both program of?cers at ONR at the time. The unifying theme of this MURI project and its companionefforts is the concept of cellular nonlinear/neuralnetwork (CNN) technology and its various extensions and chip implementations, including nanoscale sensors and the broadening ?eld of cellular wave computing. In recent years, CNN-based vision system drew much attention from vision scientists to device technologists and computer architects. Due to its early - plementation in a two-dimensional (2D) topography, it found success in early vision technologyapplications, such as focal-plane arrays, locally adaptable sensor/ processor integration, resulting in extremely high frame rates of 10,000 frames per second. More recently it drew increasing attention from computer architects, due to its intrinsic local interconnect architecture and parallel processing paradigm. As a result, a few spin-off companies have already been successful in bringing cel- lar wave computing and CNN technology to the market. This book aims to capture some of the recent advances in the ?eld of CNN research and a few select areas of applications.
This thesis reports advances in terahertz time-domain spectroscopy, relating to the development of new techniques and components that enhance the experimentalist's control over the terahertz polarisation state produced by photoconductive emitters. It describes how utilising the dynamic magnetoelectric response at THz frequencies, in the form of electromagnons, can probe material properties at a transition between two magnetically ordered phases. Additionally, preliminary investigations into the properties of materials exposed to extreme terahertz optical electric fields are reported. The work presented in this thesis may have immediate impacts on the study of anisotropic media at THz frequencies, with photoconductive emitters and detectors being the most commonly used components for commercially available terahertz spectroscopy and imaging systems, and by providing a new way to study the nature of magnetic phase transitions in multiferroics. In the longer term the increased understanding of multiferroics yielded by ultrafast spectroscopic methods, including terahertz time-domain spectroscopy, may help develop new magnetoelectric and multiferroic materials for applications such as spintronics.
This book is the first, single-source guide to successful experiments using the local electrode atom probe (LEAP (R)) microscope. Coverage is both comprehensive and user friendly, including the fundamentals of preparing specimens for the microscope from a variety of materials, the details of the instrumentation used in data collection, the parameters under which optimal data are collected, the current methods of data reconstruction, and selected methods of data analysis. Tricks of the trade are described that are often learned only through trial and error, allowing users to succeed much more quickly in the challenging areas of specimen preparation and data collection. A closing chapter on applications presents selected, state-of-the-art results using the LEAP microscope.
An all-inclusive guide on the analytical methods of Raman, infrared, and near-infrared chemical imaging An underutilized technology, chemical imaging through Raman, infrared (IR), and near-infrared (NIR) is beginning to gain recognition for its non-destructive method of permitting visualization of spatially resolved chemical information. This type of analysis is triggering a groundswell of demand as manufactured materials become more complex and the need for greater scrutiny and less damaging research practices is at a premium. Concentrating on the applications of chemical imaging, this book presents a thorough background on the theory, software, and hardware employed in this analytical technique. With full examination of this rapidly growing field, this book: Combines many different aspects and applications into one comprehensive volume Discusses how chemical imaging techniques have expanded greatly in terms of instruments and applications, but have lagged in general awareness among scientists and industries that would benefit the most from them Describes chemical imaging uses in key areas--biomedical, pharmaceutical, food, and polymer research Has chapters that outline hardware and instrumentation for the different methods of chemical imaging Encapsulating analytic methods without complicating the subject matter, this book shows where chemical imaging has been successfully applied, inspiring researchers to cultivate the exciting capabilities rooted within this powerful and multifaceted technology.
This book will fulfill the needs of time-domain spectroscopists who wish to deepen their understanding of both the theoretical and experimental features of this cutting-edge spectroscopy technique. Coherent Multidimensional Spectroscopy (CMDS) is a state-of-the-art technique with applications in a variety of subjects like chemistry, molecular physics, biochemistry, biophysics, and material science. Due to dramatic advancements of ultrafast laser technologies, diverse multidimensional spectroscopic methods utilizing combinations of THz, IR, visible, UV, and X-ray radiation sources have been developed and used to study real time dynamics of small molecules in solutions, proteins and nucleic acids in condensed phases and membranes, single and multiple excitons in functional materials like semiconductors, quantum dots, and solar cells, photo-excited states in light-harvesting complexes, ions in battery electrolytes, electronic and conformational changes in charge or proton transfer systems, and excess electrons and protons in water and biological systems.
This volume provides a wide range of imaging protocols that can be tailored to specific organisms or cell-types. Chapters guide readers through fixed-cell, live-cell, phenotype screening, super-resolution, intravital imaging techniques, and fluorescence life-time imaging microscopy (FLIM). Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Confocal Microscopy: Methods and Protocols aims to ensure successful results in the further study of this vital field.
This book provides an understandable review of SU(3) representations, SU(3) Wigner-Racah algebra and the SU(3) SO(3) integrity basis operators, which are often considered to be difficult and are avoided by most nuclear physicists. Explaining group algebras that apply to specific physical systems and discussing their physical applications, the book is a useful resource for researchers in nuclear physics. At the same time it helps experimentalists to interpret data on rotational nuclei by using SU(3) symmetry that appears in a variety of nuclear models, such as the shell model, pseudo-SU(3) model, proxy-SU(3) model, symplectic Sp(6, R) model, various interacting boson models, various interacting boson-fermion models, and cluster models. In addition to presenting the results from all these models, the book also describes a variety of statistical results that follow from the SU(3) symmetry.
The First Book on CRS Microscopy Compared to conventional Raman microscopy, coherent Raman scattering (CRS) allows label-free imaging of living cells and tissues at video rate by enhancing the weak Raman signal through nonlinear excitation. Edited by pioneers in the field and with contributions from a distinguished team of experts, Coherent Raman Scattering Microscopy explains how CRS can be used to obtain a point-by-point chemical map of live cells and tissues. In color throughout, the book starts by establishing the foundation of CRS microscopy. It discusses the principles of nonlinear optical spectroscopy, particularly coherent Raman spectroscopy, and presents the theories of contrast mechanisms pertinent to CRS microscopy. The text then provides important technical aspects of CRS microscopy, including microscope construction, detection schemes, and data analyses. It concludes with a survey of applications that demonstrate how CRS microscopy has become a valuable tool in biomedicine. Due to its label-free, noninvasive examinations of living cells and organisms, CRS microscopy has opened up exciting prospects in biology and medicine from the mapping of 3D distributions of small drug molecules to identifying tumors in tissues. An in-depth exploration of the theories, technology, and applications, this book shows how CRS microscopy has impacted human health and will deepen our understanding of life processes in the future."
A rapidly growing field, vibrational spectroscopy has found applications in industries including pharmaceutical manufacture, food and drug safety, and process monitoring on production lines. In particular, interest in clinical spectroscopy is rising rapidly as researchers recognize the potential of the vibrational spectroscopic techniques-Infrared (IR) and Raman Spectroscopy-as noninvasive tissue diagnosis tools. However, the details of the characteristic peak frequencies and their relationship to specific functional groups present in the biological tissues have not been fully understood. Vibrational Spectroscopy for Tissue Analysis introduces IR and Raman Spectroscopy to those scientists who are either using these spectroscopic techniques to address clinical problems or planning to use spectroscopy to analyze clinical tissues and understand their chemical composition. By compiling the interpretations and understandings of the spectral peaks of the biological molecules in one place, this book aids in the understanding of IR and Raman Spectroscopy, and what these techniques can offer both in early diagnosis of the disease and monitoring of the progression of the disease. Despite the tremendous advances in the field of spectroscopy, where new applications are emerging at the pace of development, there are still areas of research that are crying for further exploration. This book bridges the gap between the spectroscopic research and medical applications.
Fifth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about X-ray and Neutron Techniques for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.
Offers an overview of the analysis of art and archaeological materials using techniques based on mass spectrometry Illustrates basic principles, procedures and applications of mass spectrometric techniques. Fills a gap in the field of application on destructive methods in the analysis of museum objects Edited by a world-wide respected specialists with extensive experience of the GC/MS analysis of art objects Such a handbook has been long-awaited by scientists, restorers and other experts in the analysis of art objects
This book describes the latest developments in the new research discipline of X-ray nanochemistry, which uses nanomaterials to enhance the effectiveness of X-ray irradiation. Nanomaterials now can be synthesized in such a way as to meet the demand for complex functions that enhance the X-ray effect. Innovative methods of delivering the X-rays, which can interact with those nanomaterials much more strongly than energetic electrons and gamma rays, also create new opportunities to enhance the X-ray effect. As a result, new concepts are conceived and new developments are made in the last decade, which are discussed and summarized in this book. This book will help define the discipline and encourage more students and scientists to work in this discipline. These efforts will eventually lead to formation of a full set of physical, chemical and materials principles for this new research field.
Impedance Spectroscopy is a powerful measurement method used in many application fields such as electrochemistry, material science, biology and medicine, semiconductor industry and sensors. The International Workshop on Impedance Spectroscopy is an international workshop addressing fundamentals and applications of impedance spectroscopy. This book is the first in the series Lecture Notes on Impedance Spectroscopy (LNIS). The series covers new advances in the field of impedance spectroscopy including fundamentals, methods and applications. It releases scientific contributions as extended chapters including detailed information about recent scientific research results.
Rotational Structure in Molecular Infrared Spectra, Second Edition, fills the gap between these complex topics and the most elementary methods in the field of rotational structure in the infrared spectra of gaseous molecules. Combining foundational theoretical information with advanced applications, this book is a useful guide for all those involved in the application of molecular spectroscopic techniques and the interpretation of vibration-rotation spectra. Interpreting vibration-rotation spectra is an important skill in many scientific disciplines, ranging from nanochemistry to planetary research, hence this book is an ideal resource.
The analytical power of ion mobility spectrometry-mass spectrometry (IMS-MS) instruments is poised to advance this technology from research to analytical laboratories. Exploring these developments at this critical juncture, Ion Mobility Spectrometry-Mass Spectrometry: Theory and Applications covers the tools, techniques, and applications involved when molecular size and shape information is combined with the well-known analytical advantages of high-performance mass spectrometry. One of the Most Exciting Developments in Contemporary Mass Spectrometry After presenting an overview chapter and the fundamentals, the book focuses on instrumentation and ionization sources. It describes an ion-mobility-capable quadrupole time-of-flight mass spectrometer, the differential mobility analyzer, a cryogenic-temperature ion mobility mass spectrometer, the atmospheric solids analysis probe method, and laserspray ionization. In the final applications-oriented chapters, the contributors explore how homebuilt and commercial instruments using electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) methods are employed to solve biological and synthetic issues. Harness the Power of IMS-MS for Analyzing Complex Substances This work helps readers unfamiliar with IMS-MS to understand its fundamental theory and practical applications. It also encourages them to investigate the potential analytical uses of IMS-MS and further explore the power of this method. Numerous color figures are included on downloadable resources.
This book presents and discusses recent developments in the broad field of spectroscopy, providing the reader with an updated overview. The main objective is to introduce them to recent innovations and current trends in spectroscopy applied to molecules and materials. The book also brings together experimentalists and theoreticians to highlight the multidimensional aspects of spectroscopy and discuss the latest issues. Accordingly, it provides insights not only into the general goals of spectroscopy, but also into how the various spectroscopic techniques represent a toolbox that can be used to gain a more detailed understanding of molecular systems and complex chemical problems. Besides technical aspects, basic theoretical interpretations of spectroscopic results are also presented. The spectroscopy techniques discussed include UV-visible absorption spectroscopy, Raman spectroscopy, IR absorption spectroscopy, fluorescence spectroscopy, and time-resolved spectroscopy. In turn, basic tools like lasers and theoretical modeling approaches are also presented. Lastly, applications for the characterization of fundamental properties of molecules (environmental aspects, biomolecules, pharmaceutical drugs, hazardous molecules, etc.) and materials (nanomaterials, nuclear chemistry materials, biomaterials, etc.) are discussed. Given its scope, the book offers a valuable resource for researchers from various branches of science, and presents new techniques that can be applied to their specific problems.
Assembling the work of an international panel of researchers, Mass Spectrometry of Nucleosides and Nucleic Acids summarizes and reviews the latest developments in the field and provides a window on the next generation of analysis. Beginning with an overview of recent developments, the book highlights the most popular ionization methods and illustrates the diversity of strategies employed in the characterization and sequencing of DNA and RNA oligomers, nucleosides, nucleotides, and adducts. It describes studies performed on deoxyinosine and its analogues and provides an introduction to tandem mass spectrometry (MS/MS). Next, the contributors examine mass spectrometric application in the study of cyclic nucleotides in biochemical signal transduction. They analyze urinary modified nucleosides and explore DNA adducts. They discuss isotope labeling of DNA-mass spectrometry (ILD-MS) and examine various uses of electrospray ionization mass spectrometry (ESI-MS). The book reviews recent progress in the direct MS characterization of noncovalent nucleic acid-protein complexes, explores the interaction and ionization of guanidine-derived compounds with highly acidic biomolecules, and examines quantitative identification of nucleic acids via signature digestion products detected using mass spectrometry. The book describes a direct-infusion ESI-MS approach that can serve as a screening technique for the presence of modified nucleosides from small RNAs. Lastly, it discusses the LC-MS/MS method for the in vitro replication studies on damage-containing DNA substrates, and concludes with an examination of the influence of metal ions on the structure and reactivity of nucleic acids. The exciting developments in mass spectrometry technology have fueled incredible advances in our understanding of nucleic acids and their complexes. The contributions presented in this volume capture the range of these advances, helping to inspire new findings and avenues of research.
Atomistic simulations of metals under irradiation are indispensable for understanding damage processes at time- and length-scales beyond the reach of experiment. Previously, such simulations have largely ignored the effect of electronic excitations on the atomic dynamics, even though energy exchange between atoms and electrons can have significant effects on the extent and nature of radiation damage. This thesis presents the results of time-dependent tight-binding simulations of radiation damage, in which the evolution of a coupled system of energetic classical ions and quantum mechanical electrons is correctly described. The effects of electronic excitations in collision cascades and ion channeling are explored and a new model is presented, which makes possible the accurate reproduction of non-adiabatic electronic forces in large-scale classical molecular dynamics simulations of metals.
recently discovered advantages of amorphous forms of medicines/pharmaceutical products which focused a significant part of industry-related efforts on the GFA (Glass Forming Ability) and the glass temperature (T) versus pressure g dependences. 1 b ? 0 ? ? o ? P ? Pg P ? Pg 0 ? ? ? ? T (P ) = F (P )D (P ) =T 1 + exp ? g g ? 0 ? ? ? ? c + Pg ? ? ? ? 400 1 b 0 o ? ? ? ? P ? P P ? P g g 0 ? ? ? ? T (P ) = F (P )D (P ) =T 1 + exp ? g g 0 ? ? ? ? c ? + P max g ? ? ? ? T ~7 GPa g max P ~ 304 K Liquid g 300 1 HS glass 0 200 -1 mSG ?=0. 044 Liquid -2 100 -3 glass ?=0. 12 -1. 2 -0. 9 -0. 6 -0. 3 0. 0 log T 10 scaled -1 0 1 2 3 4 5 6 7 8 9 10 11 12 P (GPa) g 19 Figure 1. T he pressure evolution of the glass temperature in gl Th ye s cerol ol . id curve shows the parameterization of experimental data via the novel, modifie d Glat Sizm elon type equation, given in the Figure.
Chemical Analysis and Material Characterization by Spectrophotometry integrates and presents the latest known information and examples from the most up-to-date literature on the use of this method for chemical analysis or materials characterization. Accessible to various levels of expertise, everyone from students, to practicing analytical and industrial chemists, the book covers both the fundamentals of spectrophotometry and instrumental procedures for quantitative analysis with spectrophotometric techniques. It contains a wealth of examples and focuses on the latest research, such as the investigation of optical properties of nanomaterials and thin solid films.
This biography is a personal portrait of one of the best-known Dutch physicists, Nicolaas Bloembergen. Born in 1920 in Dordrecht, Bloembergen studied physics in Utrecht, leaving after World War II for the United States, where he became an American citizen in 1958. At Harvard University, he pioneered nuclear magnetic resonance (NMR, used in chemistry and biology for structure identification; moreover leading to MRI), laser theory and nonlinear optics. In 1978 he was awarded the Lorentz Medal for his contribution to the theory of nonlinear optics (used in fiber optics), and in 1981 he received the Nobel Prize for physics, along with Arthur Schawlow and Kai Siegbahn. The book is based on numerous conversations with Nicolaas Bloembergen himself, his wife Deli Brink, his family, and colleagues in science. It describes his childhood and study in Bilthoven and Utrecht, the first postwar years at Harvard, the discoveries of masers and lasers, and the award of the Nobel Prize. It also delves into Bloembergen's involvement in American politics, particularly his role in Ronald Reagan's controversial Star Wars program. |
You may like...
Childhood Education: Effective Practices
Carson Taylor
Hardcover
Klipkoud - Ware Suid-Afrikaanse Verhale…
Nicole Engelbrecht
Paperback
Chasing Fame and Fortune: Can You Become…
Allison Lassieur
Paperback
|