![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
The first edition of this now classic work helped to establish mass spectrometry as the premier tool for drug metabolism studies. Completely rewritten from start to finish, Using Mass Spectrometry for Drug Metabolism Studies, Second Edition brings medicinal chemists and mass spectrometry professionals up to speed with the rapid advances in the field, the emergence of cutting-edge approaches, and ways to meet steadily increasing vendor demands. Written by international scientists who are experts in their respective disciplines, this state-of-the-art reference effectively encapsulates current mass spectrometry best practices. The stand-alone chapters cover various topics - from metabolite identification to fast chromatography with UPLC - and in a style that is understandable to experts and field newcomers alike. The second edition of this bestseller includes coverage of new instrumentation and software as well as a wealth of updated information on the latest findings surrounding biomarkers and metabolomics and new chapters on both UPLC and DESI/DART. With more than 180 illustrations and an eight-page color insert, this valuable reference explores multiple modern mass spectrometry techniques and strategies. It includes an excellent overview of the entire drug discovery process plus the latest developments on how mass spectrometry is used to support this endeavor.
Assembling the work of an international panel of researchers, Mass Spectrometry of Nucleosides and Nucleic Acids summarizes and reviews the latest developments in the field and provides a window on the next generation of analysis. Beginning with an overview of recent developments, the book highlights the most popular ionization methods and illustrates the diversity of strategies employed in the characterization and sequencing of DNA and RNA oligomers, nucleosides, nucleotides, and adducts. It describes studies performed on deoxyinosine and its analogues and provides an introduction to tandem mass spectrometry (MS/MS). Next, the contributors examine mass spectrometric application in the study of cyclic nucleotides in biochemical signal transduction. They analyze urinary modified nucleosides and explore DNA adducts. They discuss isotope labeling of DNA-mass spectrometry (ILD-MS) and examine various uses of electrospray ionization mass spectrometry (ESI-MS). The book reviews recent progress in the direct MS characterization of noncovalent nucleic acid-protein complexes, explores the interaction and ionization of guanidine-derived compounds with highly acidic biomolecules, and examines quantitative identification of nucleic acids via signature digestion products detected using mass spectrometry. The book describes a direct-infusion ESI-MS approach that can serve as a screening technique for the presence of modified nucleosides from small RNAs. Lastly, it discusses the LC-MS/MS method for the in vitro replication studies on damage-containing DNA substrates, and concludes with an examination of the influence of metal ions on the structure and reactivity of nucleic acids. The exciting developments in mass spectrometry technology have fueled incredible advances in our understanding of nucleic acids and their complexes. The contributions presented in this volume capture the range of these advances, helping to inspire new findings and avenues of research.
Raman Spectroscopy in Archaeology and Art History highlights the important contributions Raman spectroscopy makes as a non-destructive method for characterising the chemical composition and structure and in determining the provenance and authenticity of objects of archaeological and historical importance. It brings together studies from diverse areas and represents the first dedicated work on the use of this technique in this increasingly important field. Coverage includes: An Introduction to Raman Spectroscopy, including practical aspects of Raman spectroscopy and complementary techniques; Dyes and Pigments; Artefacts; Biological Materials and Degradation; Jewellery and Precious Stones. The book contains a broad selection of real-world examples in the form of case studies to provide the reader with a true appreciation of the procedures that need to be invoked to derive spectroscopic information from some of the most challenging specimens and systems. Colour illustrations of objects of investigation and a database of 72 Raman spectra of relevant minerals are included. With its extensive examples, Raman Spectroscopy in Archaeology and Art History will be of particular interest to specialists in the field, including researchers and scientific/conservation staff in museums. Academics will find it an invaluable reference to the use of Raman spectroscopy.
This book offers a complete diagnosis of concrete samples collected from a pile cap block of residential buildings affected by internal swelling reactions. Covering an extensive laboratory campaign to evaluate the transport properties of concrete samples, as well as their physical and chemical composition using advanced techniques to analyse cores extracted from real buildings that have concrete elements affected by internal swelling reactions (ISR). It features several rehabilitation procedures, pile caps repair and rehabilitation design, executed using strengthening procedures to provide the complete restoration of the structural integrity of the element deteriorated. These rehabilitation procedures proved to be a good solution to retrofit pile cap deteriorated by expansions due to internal swelling reactions of concrete. The book also offers a systematic review of the current state of knowledge and it is a valuable resource for scientists, students, and practitioners in various scientific and engineering disciplines, namely, civil and materials engineering, as well as and other interested parties.
Atomistic simulations of metals under irradiation are indispensable for understanding damage processes at time- and length-scales beyond the reach of experiment. Previously, such simulations have largely ignored the effect of electronic excitations on the atomic dynamics, even though energy exchange between atoms and electrons can have significant effects on the extent and nature of radiation damage. This thesis presents the results of time-dependent tight-binding simulations of radiation damage, in which the evolution of a coupled system of energetic classical ions and quantum mechanical electrons is correctly described. The effects of electronic excitations in collision cascades and ion channeling are explored and a new model is presented, which makes possible the accurate reproduction of non-adiabatic electronic forces in large-scale classical molecular dynamics simulations of metals.
This book introduces the physics and chemistry of plastic scintillators (fluorescent polymers) that are able to emit light when exposed to ionizing radiation, discussing their chemical modification in the early 1950s and 1960s, as well as the renewed upsurge in interest in the 21st century. The book presents contributions from various researchers on broad aspects of plastic scintillators, from physics, chemistry, materials science and applications, covering topics such as the chemical nature of the polymer and/or the fluorophores, modification of the photophysical properties (decay time, emission wavelength) and loading of additives to make the material more sensitive to, e.g., fast neutrons, thermal neutrons or gamma rays. It also describes the benefits of recent technological advances for plastic scintillators, such as nanomaterials and quantum dots, which allow features that were previously not achievable with regular organic molecules or organometallics.
recently discovered advantages of amorphous forms of medicines/pharmaceutical products which focused a significant part of industry-related efforts on the GFA (Glass Forming Ability) and the glass temperature (T) versus pressure g dependences. 1 b ? 0 ? ? o ? P ? Pg P ? Pg 0 ? ? ? ? T (P ) = F (P )D (P ) =T 1 + exp ? g g ? 0 ? ? ? ? c + Pg ? ? ? ? 400 1 b 0 o ? ? ? ? P ? P P ? P g g 0 ? ? ? ? T (P ) = F (P )D (P ) =T 1 + exp ? g g 0 ? ? ? ? c ? + P max g ? ? ? ? T ~7 GPa g max P ~ 304 K Liquid g 300 1 HS glass 0 200 -1 mSG ?=0. 044 Liquid -2 100 -3 glass ?=0. 12 -1. 2 -0. 9 -0. 6 -0. 3 0. 0 log T 10 scaled -1 0 1 2 3 4 5 6 7 8 9 10 11 12 P (GPa) g 19 Figure 1. T he pressure evolution of the glass temperature in gl Th ye s cerol ol . id curve shows the parameterization of experimental data via the novel, modifie d Glat Sizm elon type equation, given in the Figure.
Chemical Analysis and Material Characterization by Spectrophotometry integrates and presents the latest known information and examples from the most up-to-date literature on the use of this method for chemical analysis or materials characterization. Accessible to various levels of expertise, everyone from students, to practicing analytical and industrial chemists, the book covers both the fundamentals of spectrophotometry and instrumental procedures for quantitative analysis with spectrophotometric techniques. It contains a wealth of examples and focuses on the latest research, such as the investigation of optical properties of nanomaterials and thin solid films.
This expanded and updated well-established textbook contains an advanced presentationof quantum mechanics adapted to the requirements of modern atomic physics. Itincludes topics of current interest such as semiclassical theory, chaos, atom optics andBose-Einstein condensation in atomic gases. In order to facilitate the consolidationof the material covered, various problems are included, together with completesolutions. The emphasis on theory enables the reader to appreciate the fundamentalassumptions underlying standard theoretical constructs and to embark on independentresearch projects. The fourth edition of Theoretical Atomic Physics contains anupdated treatment of the sections involving scattering theory and near-thresholdphenomena manifest in the behaviour of cold atoms (and molecules). Special attentionis given to the quantization of weakly bound states just below the continuum thresholdand to low-energy scattering and quantum reflection just above. Particular emphasisis laid on the fundamental differences between long-ranged Coulombic potentialsand shorter-ranged potentials falling off faster than 1/r2 at large distances r. The newsections on tunable near-threshold Feshbach resonances and on scattering in two spatialdimensions also address problems relevant for current and future research in the fieldof cold (and ultra-cold) atoms. Graduate students and researchers will find this book avaluable resource and comprehensive reference alike.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
This book presents a careful selection of the most important developments of the \phi^4 model, offering a judicious summary of this model with a view to future prospects and the challenges ahead. Over the past four decades, the \phi^4 model has been the basis for a broad array of developments in the physics and mathematics of nonlinear waves. From kinks to breathers, from continuum media to discrete lattices, from collisions of solitary waves to spectral properties, and from deterministic to stochastic models of \phi^4 (and \phi^6, \phi^8, \phi^12 variants more recently), this dynamical model has served as an excellent test bed for formulating and testing the ideas of nonlinear science and solitary waves.
This book focuses on the essential scientific ideas and breakthroughs in the last three decades for organic solar cells that have realized practical applications. The motivation for publishing this book is to explain how those essential ideas have arisen and to provide a foundation for future progress by target readers-students, novices in the field, and scientists with expertise. The main topics covered in the book include the fundamental principles and history of organic solar cells, blended junction, nanostructure control, photocurrent generation, photovoltage generation, doping, practical organic solar cells, and possible ideas for the future. The editors enthusiastically anticipate the vigorous development of the field of organic solar cells by young scientists of the next generation.
This volume of the CRM Conference Series is based on a carefully refereed selection of contributions presented at the "11th International Symposium on Quantum Theory and Symmetries", held in Montreal, Canada from July 1-5, 2019. The main objective of the meeting was to share and make accessible new research and recent results in several branches of Theoretical and Mathematical Physics, including Algebraic Methods, Condensed Matter Physics, Cosmology and Gravitation, Integrability, Non-perturbative Quantum Field Theory, Particle Physics, Quantum Computing and Quantum Information Theory, and String/ADS-CFT. There was also a special session in honour of Decio Levi. The volume is divided into sections corresponding to the sessions held during the symposium, allowing the reader to appreciate both the homogeneity and the diversity of mathematical tools that have been applied in these subject areas. Several of the plenary speakers, who are internationally recognized experts in their fields, have contributed reviews of the main topics to complement the original contributions.
Annual Reports on NMR Spectroscopy, Volume 96, provides an in-depth accounting of progress in nuclear magnetic resonance (NMR) spectroscopy and its many applications, including all branches of science in which precise structural determination is required, and in which the nature of interactions and reactions in solution is being studied. This book has established itself as a premier resource for both specialists and non-specialists, with this new release focusing on Recent Advances in Absolute Shielding Scales for NMR Spectroscopy, Applications of Hyperpolarus Long-Lived States in Drug Screening, and Characterization of Mixed Network Phosphate Classes by 1D and 2D NMR Techniques, amongst other topics.
Used primarily for characterizing polymers and biological systems, vibrational spectroscopy continues to uncover structural information pertinent to a growing number of applications. Vibrational Spectroscopy of Biological and Polymeric Materials compiles the latest developments in advanced infrared and Raman spectroscopic techniques that are applicable to both polymeric materials and biological compounds. It also presents instrumentation and experimental details that can be used by polymer chemists and biochemists in the design of their own experiments. The text starts by describing the application of static and dynamic FT-IR spectroscopies to liquid crystalline polyurethanes, including a clear exposition of the theory behind the experiments. It discusses the measurement of static and dynamic linear dichroism and stress or strain in both single and multiple fiber composite materials. The book explains the roles of vibrational spectroscopy and the Langmuir-Blodgett technique in the study and preparation of high-quality ultrathin materials. Chapters rich in both theoretical and experimental details describe two-dimensional correlation spectroscopy and vibrational circular dichroism. Biomedically-oriented chapters describe the advances in IR imaging of tissues made possible by focal-plane arrays; as well as the use of ligand-gated FT-IR difference spectroscopy in neuropharmacology, particularly in identifying ligands and modes of action for the large number of membrane receptors recently identified in the human genome. The final chapter discusses the application of time-resolved FT-IR spectroscopy to biological materials, providing a detailed guide to the use of commercial step-scan instrumentation for examining sub-millisecond mechanistic details of photobiological processes. Written by eminent experts in these fields, Vibrational Spectroscopy of Biological and Polymeric Materials is an ideal and practical reference for the broad spectrum of researchers interested in the analysis and integration of biological and polymeric materials.
This book offers selected contributions to fundamental research and application in designing and engineering materials. It focuses on mechanical engineering applications such as automobile, railway, marine, aerospace, biomedical, pressure vessel technology, and turbine technology. This includes a wide range of material classes, like lightweight metallic materials, polymers, composites, and ceramics. Advanced applications include manufacturing using the new or newer materials, testing methods, and multi-scale experimental and computational aspects.
This work studies the relaxation dynamics of molecules in both the gas and liquid phases after strong field ionization, using transient absorption in the soft X-rays. In particular, the thesis presents the first realization of time-resolved X-ray absorption spectroscopy in the spectral water window with a laser-based HHG source. These remarkable experiments were not only performed for isolated molecules, but also in liquids, for which the spectral coverage of the K-edges of C, N, and O are of primary importance for investigating biological molecules. The technique relies on the generation of high-order harmonics to further probe the electronic structure of molecules. Using the atomic selectivity of high energies and the temporal coherence of laser technology, we demonstrate the observation of the first stages of chemical transformation of matter in the gas and liquid phases.
This thesis reports advances in terahertz time-domain spectroscopy, relating to the development of new techniques and components that enhance the experimentalist's control over the terahertz polarisation state produced by photoconductive emitters. It describes how utilising the dynamic magnetoelectric response at THz frequencies, in the form of electromagnons, can probe material properties at a transition between two magnetically ordered phases. Additionally, preliminary investigations into the properties of materials exposed to extreme terahertz optical electric fields are reported. The work presented in this thesis may have immediate impacts on the study of anisotropic media at THz frequencies, with photoconductive emitters and detectors being the most commonly used components for commercially available terahertz spectroscopy and imaging systems, and by providing a new way to study the nature of magnetic phase transitions in multiferroics. In the longer term the increased understanding of multiferroics yielded by ultrafast spectroscopic methods, including terahertz time-domain spectroscopy, may help develop new magnetoelectric and multiferroic materials for applications such as spintronics.
Glow discharge optical emission spectroscopy (GDOES) is an essential technique for the direct analysis of bulk solids, for elemental surface analysis and for the depth profiling of thin films and industrial coatings. The technique has shown rapid growth in numbers of instruments, in breadth of applications, in improved quantification in recent years and is now a recognised technique within the ISO, with two international standards. Glow Discharge Optical Emission Spectroscopy: A Practical Guide takes the reader on a journey through instrument operation, sample preparation, analysis, and reporting results. It follows two sets of samples through the whole process of analysis, brass samples for bulk analysis, and zinc-coated steel for depth profiling. Procedures are consistent with recent ISO standards and each step is loaded with hands-on tips and theoretical insight. The book also includes unique data tables on spectral interferences, molecular bands, self-absorption and relative sputtering rates. This book is designed for those using or managing GDOES instruments and for students interested in learning the technique from a hands-on perspective. It is also an invaluable aid to those considering the purchase of a GDOES instrument, or those using GDOES results, to understand in detail how the technique works and what is involved in maintaining the instrument and achieving high quality results.
This book presents an overview of the latest Moessbauer spectroscopy research. It sheds light on various cutting-edge research subjects: (i) nuclear resonance scattering experiments implemented at synchrotron radiation facilities, e.g., ESRF, DESY and Spring-8; (ii) multidisciplinary materials research related to chemistry, biology, geoscience, molecular magnetism of metal complexes, batteries, and magnetism; (iii) novel imaging techniques based on probing diffusion in solids using Moessbauer spectroscopy. The first three chapters introduce recent research on modern Moessbauer spectroscopy, including nuclear resonant scattering experiments and development of related techniques at synchrotron accelerator facilities. Chapters 4 and 5 then demonstrate the applications of such pioneering techniques to chemistry, biology and geoscience. Chapters 6 and 7 describe the applications to new functional materials, i.e., metal complexes and Li- and Na-ion batteries, while the final two chapters are devoted to two important measuring techniques: Moessbauer spectroscopy under external magnetic fields, and microscopic Moessbauer techniques on diffusion in solids, which are expected to play an essential role in the investigation and characterization of magnetic structures and microstructures in materials. The cutting-edge content provides readers with quick updates on the latest research topics in the field, while the tutorial-style descriptions allow readers unfamiliar with Moessbauer spectroscopy to learn and implement the techniques. As such, the book is especially useful for advanced undergraduate and early graduate students who have recently been assigned to a laboratory.
Angelo Secchi was a key figure in 19th century science. An Italian Jesuit and scientist, he helped lead the transition from astronomy to astrophysics and left a lasting legacy in the field. Secchi's spectral classification of stars was a milestone that paved the way for modern astronomical research. He was also a founder of modern meteorology and an innovator in the design and development of new instruments and methods across disciplines.This contributed volume collects together reviews from an international group of historians, scientists and scholars representing the multiple disciplines where Secchi made significant contributions during his remarkable career. It analyzes both his famous and lesser known pioneering efforts with equal vigor, providing a well-rounded narrative of his life's work. Beyond his scientific and technological work, his role as a Jesuit priest in Rome during the turbulent years of the mid 19th century is also described and placed in the context of his scientific and civic activities.
This book presents a detailed look at experimental and computational techniques for accurate structure determination of free molecules. The most fundamental property of a molecule is its structure - it is a prerequisite for determining and understanding most other important properties of molecules. The determination of accurate structures is hampered by a myriad of factors, subjecting the collected data to non-negligible systematic errors. This book explains the origin of these errors and how to mitigate and even avoid them altogether. It features a detailed comparison of the different experimental and computation methods, explaining their interplay and the advantages of their combined use. Armed with this information, the reader will be able to choose the appropriate methods to determine - to a great degree of accuracy - the relevant molecular structure. |
![]() ![]() You may like...
Accelerated Windows Malware Analysis…
Dmitry Vostokov, Software Diagnostics Services
Paperback
R2,450
Discovery Miles 24 500
|