![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
Chemical relaxation spectrometry involves the application of several different relaxation techniques to investigate the kinetics and mechanisms of fast chemical reactions and also dynamic molecul 10 ar processes that occur in liquids in the time range 1 - 10- secs. These methods have been used widely in several disciplines of the natural sciences including molecular biology, biochemistry, organic stereochemistry, detergent chemistry and inorganic chemistry. The purpose of the Advanced Study Institute was to provide a forum for scientists to discuss the role, scope and limitations of the various applications of chemical relaxation methods in order to stimulate discussion and interaction between workers in these different fields. The papers described in this volume are a summary of the contributions that were discussed at the meeting. The brief given to the authors was to attempt to prepare an article contain ing a good supply of references so that the book can be used not only by those starting in the field, but also by the specialist and research worker. These contributions cover a varied range of topics summarizing the achievements, the current state of knowledge and possible application in many disciplines. It is to be hoped that this volume will help to point out some new directions towards which research efforts are required and to attract new researchers with fresh points of view."
Sputtering, the ejection of atoms or groups of atoms from the surface of a solid bombarded by energetic particles, is a widely observed phenomenon that has many applications in today's experimental physics and technology. This is the third and final volume of a comprehensive review on sputtering. Whereas the first two volumes deal primarily with physical aspects such as the theory of sputtering, experimentally observed sputtering yields and surface topography changes, this volume is devoted to the characteristic properties of the sputtered particles and technological applications of sputtering. The particles are characterized by their energy, mass, and angular distributions, along with their charge and excitation states, while the applications described in- clude surface and depth analysis, micromachining, and the production of surface coatings and thin films. As in the previous two volumes, the various chapters have been written by the main authorities in the field. The book addresses a broad audience: scientists active in the field will find the overview and background information they have long been seeking, while students and new comers to surface science and materials science will find a readable introduction to sputtering.
Extinction and standardization corrections to infrared measurements are of the utmost importance in astronomy. Various views on these concepts and problems of implementation in infrared photometry are discussed thoroughly and recommendations are presented. Among these are: the adoption of narrower broad-band "Johnson" filters that are better centered in the atmospheric water windows than is currently the case; the measurements of atmospheric water vapor content concurrent with the astronomical measurements; the use of appropriate atmospheric models to treat the extinction adequately; and the publication of complete details of the systemic passbands and their transformability to other systems. To conclude the volume, R. Bell summarizes and comments on the contributions to the symposium, and the editor adds a concluding postscript on post-meeting developments and perspectives.
This text on precision frequency measurement and its key enabling techniques includes reviews written by some of the most experienced researchers in their respective fields. This text should prove useful to researchers just entering the field of frequency metrology and standards, or equally well to the experienced practitioner.
Detection of concealed explosives is a notoriously difficult problem, and many different approaches have been proposed to solve this problem. Nuclear quadrupole resonance (NQR) is unique in many ways. It operates in a safe AM radio frequency range, and it can remotely detect unique fingerprint (NQR spectrum) of many explosives, such as TNT or RDX. As such, the detection of target does not depend on the shape or material of the container, or the presence of metallic object such as triggers etc. Spectra of chemically similar compounds differ enough that their presence never causes interference or false alarms. Unfortunately, widespread use is prevented due to low sensitivity, radiofrequency interference from the noisy environment, and inability to detect liquid explosives. This book presents current state of the art of the attempts to overcome NQR sensitivity problem, either by increasing the strengths of signals generated, or by increasing the specificity of the technique through a better understanding of the factors that affect the quadrupolar parameters of specific explosives. The use of these specific quadrupolar parameters is demonstrated on signal processing techniques that can detect weak signals, which are hidden in a noisy background. The problem of differentiation of liquid explosives and benign liquids in closed containers is approached by measurements of different nuclear magnetic resonance (NMR) parameters. As shown, a couple of solutions has reached a prototype stage and could find their use in a near future."
This monograph deals with ion induced electron emission from crystalline solids bombarded by fast ions. During the past decade, electron spectroscopy combined with the ion channeling technique has revealed various "messages" about ion solid and electron solid interactions carried by the emitted elec trons. While the ion induced electrons produced by binary encounter pro cesses are of primary interest in this book, closely related topics such as the emission of ion induced Auger electrons from crystal targets are also reviewed, with emphasis on their interdisciplinary aspects, for example, their relation to photoelectron diffraction. In addition to these topics, the book describes the underlying physics and experimental techniques so that it should provide useful information for students and scientists working in ion beam based re search and development in various areas of atomic and solid state physics, materials science, surface science, etc. I am much indebted to the gererations of students who have passed through my laboratory, since they have stimulated me with elementary but essential questions in various phases of the studies. I am also grateful to T. Azuma, Y. Kido, K. Kimura, H. Naramoto, and S. Seki for critical reading of the manuscript. Tsukuba, August 2001 Hiroshi Kudo Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1o Terminology and Table of Symbols . . . . . . . . . . . . . . . . . . . . . . . 5 2. 2. 1 Notes on Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 2 Frequently Used Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3. Binary Encounter Electron Emission . . . . . . . . . . . . . . . . . . . . . . 7 3. 1 Ion Electron Elastic Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. 2 Recoil Cross Section of Orbital Electrons . . . . . . . . . . . . . . . . . .
During recent years there has been increasing interest in the value of a number of chemical and physical-chemical analytical methods for the detection and characterization of microorganisms. Furthermore, such methods are currently used in studies on microbial metabolic processes, on the role of microorganisms in the turnover of inorganic and organic compounds, and on the impact on environmental changes by microbial activity. Moreover, the introduction of some of these methods not only shortens the analytical time period compared to *'traditional" techniques, but also improves the analytical quality. Mass spectrometry (MS) combined with chromatographic inlet systems, particularly gas chromatography (GC), belongs to those methods which during recent years have established their value for the above-mentioned purposes. The present volume starts with basic chapters on the principles for MS and common inlet systems, particulary Gc. It discusses applications of these techniques to a number of microbiological disciplines, e.g., ecologi cal and medical microbiology. Emphasis is laid on organic compound classes vii viii / PREFACE of special relevance to microbiology, e.g., volatiles, lipids, amino acids, peptides and carbohydrates. Some compound classes of a more general biochemical rather than specific microbiological importance, e.g., steroids and nucleotides, are dealt with briefly. The editors wish to thank all those who have contributed to this book. We hope it will stimulate further research in this futuristic field and will be of practical value.
Measuring the hydrogen content in materials is important both for research and for various applications in material and surface sciences, such as hydrogen embrittlement of steel, controlled thermonuclear reaction first wall studies, and changed material properties caused by dissolved hydrogen. Hydrogen is the most difficult atomic species to analyze by traditional methods, but nuclear physics methods are particularly suited for this purpose. President of the Uzbek SSR Academy of Sciences P.K. Khabibullaev and Professor B.G. Skorodumov discuss in this book the characteristics of these methods, such as lower detection limits, selectivity in respect to different isotopes, accuracy, depth resolution and maximum detection depth. Examples of applications that are dealt with include the determination of material humidity, the dating of objects, the study of hydrogen diffusion including non-stationary processes, and the investigation of changes in material properties like superconductivity, plasticity and electrical properties due to contamination by hydrogen.
This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.com
A detailed study of the science, engineering and applications of terahertz technology, based on room-temperature solid-state devices, which are seen as the key technology for wider applications in this frequency range. The relative merits of electronic and optical devices are discussed and new device principles identified. Issues of terahertz circuit design, implementation and measurement are complemented by chapters on current and future applications in communications, sensing and remote surveillance. Audience: The unique coverage of all aspects of terahertz technology will appeal to both new and established workers in the field, as well as providing a survey for the interested reader.
Photothermal science continues to be an area of rapid development and active investigation, as is demonstrated by this volume. The various contributions present fundamental research in materials science, physics, chemistry, biology, and medicine, as well as important applications of photothermal techniques in nondestructive evaluation, aeronomy and pollution control, and other areas. The topics treated include measurements of spectral properties of gases, the theory of thermally generated elastic waves, a method of monitoring local surface displacements, materials characterization and nondestructive evaluation of materials, studies of the dynamics of primary photophysical processes, fast energy exchange at surfaces and at interfaces (e.g. in medicine and photobiology), thermal EXAFS and XANES applied to metals and semiconductors, and imaging of magnetic materials using microwave sources.
76 2. Short Oligonucleotide Mass Analysis 76 2. 1. Method Outline 76 2. 2. Design of PCR Primers and Fragments for Analysis 78 2. 3. Typical PCR Reaction Conditions 79 3. Electrospray Ionisation Mass Spectrometry 79 Formation of Ions 3. 1. 79 3. 2. Tandem Mass Spectrometry 79 3. 3. Typical ESI-MS Settings for SOMA 80 4. Purification Procedures 80 4. 1. Phenol/Chloroform Extraction and Ethanol Precipitation 80 4. 2. In-line HPLC Purification 81 5. Genotyping Using SOMA 81 5. 1. APC Genotyping in Human Subjects 81 5. 2. APC Genotyping in Min Mice 85 5. Mutation Detection Using SOMA 86 6. 1. Analysis of p53 Mutations in Liver Cancer Patients 86 6. 1. 1. p53 Mutations in Liver Tumours 87 6. 1. 2. p53 Mutations in Plasma Samples 88 7. Advantages and Disadvantages of SOMA 89 8. Future Perspectives 90 9. Acknowledgements 91 10. References 91 CHAPTER 7 WV. Bienvenut, M. Muller, PM. Palagi, E. Gasteiger, M. Heller, E. Jung, M. Giron, R. Gras, S. Gay, PA. Binz, G J. Hughes, JC. Sanchez, RD. Appel, DF. Hochstrasser Proteomics and Mass Spectrometry: Some Aspects and Recent Developments 1. Introduction to Proteomics 93 2. Protein Biochemical and Chemical Processing Followed by Mass Spectrometric Analysis 94 2. 1. 2-DE Gel Protein Separation 95 Protein Identification Using Peptide Mass Fingerprinting and Robots 96 2. 2. 2. 2. 1. MALDI-MS Analysis 98 2. 2. 2. MS/MS Analysis 102 Improvement of the Identification by Chemical Modification of Peptides 106 2. 2. 3."
The Advanced Study Institute on "Path Integrals and Their Applications in Quantum, Statistical, and Solid State Physics" was held at the University of Antwerpen (R.U.C.A.), July 17-30, 1977. The Institute was sponsored by NATO. Co-sponsors were: A.C.E.C. (Belgium), Agfa-Gevaert (Belgium), l'Air Li~uide BeIge (Belgium), Be1gonucleaire (Belgium), Bell Telephone Mfg. Co. (Belgium), Boelwerf (Belgium), Generale BankmaatschappiJ (Belgium), I.B.M. (Belgium), Kredietbank (Belgium), National Science Foundation (U.S.A.), Siemens (Belgium). A total of 100 lecturers and partici- pants attended the Institute. The development of path (or functional) integrals in relation to problems of stochastic nature dates back to the early 20's. At that time, Wiener succeeded in obtaining the fundamental solution of the diffusion e~uation using Einstein's joint probability of finding a Brownian particle in a succession of space intervals during a corresponding succession of time intervals. Dirac in the early 30's sowed the seeds of the path integral formulation of ~uantum mecha- nics. However, the major and decisive step in this direction was taken with Feynman's works in ~uantum and statistical physics, and quantum electrodynamicso The applications now extend to areas such as continuous mechanics, and recently functional integration methods have been employed by Edwards for the study of polymerized matter.
This monograph discusses collision-induced electron emission from nearly free-electron metals by ion or electron impact. This subject is, as is well known, of acute importance in understanding plasma-wall interactions in thermonuclear reactors. It is also the basis for one of the most exciting technological developments of the last few years - scanning electron miscroscopy. Several electron excitation mechanisms of electrons in the target are considered: excitation of single conduction and core electrons, excitation by plasmon decay and by Auger processes. Transport of inner excited electrons is simulated by the Boltzmann equation incorporating both elastic and inelastic collisions. The numerical calculation of scattering rates uses a dynamically screened Coulomb interaction. These results for the energy distributions of emerging electrons as well as the electron yield are compared with recent experimental measurements on electron emission from polycrystalline aluminum.
Fabrication technologies for nanostructured devices have been
developed recently, and the electrical and optical properties of
such nanostructures are a subject of advanced research.
This completely revised and enlarged English edition of the original Russianbook deals with the identification and separation of charged particles in high energy physics experiments. Proportional drift and streamer chambers as well as ionization measurements with cloud, spark, and ionization chambers are discussed. Both scientists and advanced undergraduate students specializing in high energy or nuclear physics will find useful information for planning and performing ionization measurements and their analyses.
Photonic band gap crystals offer unique ways to tailor light and the propagation of electromagnetic waves. In analogy to electrons in a crystal, EM waves propagating in a structure with a periodically-modulated dielectric constant are organized into photonic bands separated by gaps in which propagating states are forbidden. Proposed applications of such photonic band gap crystals, operating at frequencies from microwave to optical, include zero- threshold lasers, low-loss resonators and cavities, and efficient microwave antennas. Spontaneous emission is suppressed for photons in the photonic band gap, offering novel approaches to manipulating the EM field and creating high-efficiency light-emitting structures. Photonic Band Gap Materials identifies three most promising areas of research. The first is materials fabrication, involving the creation of high quality, low loss, periodic dielectric structures. The smallest photonic crystals yet fabricated have been made by machining Si wafers along (110), and some have lattice constants as small as 500 microns. The second area is in applications. Possible applications presented are microwave mirrors, directional antennas, resonators (especially in the 2 GHz region), filters, waveguides, Y splitters, and resonant microcavities. The third area covers fundamentally new physical phenomena in condensed matter physics and quantum optics. An excellent review of recent development, covering theoretical, experimental and applied aspects. Interesting and stimulating reading for active researchers, as well as a useful reference for non-specialists.
Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs) interfacing with organic and inorganic materials. The three main chapters detail novel trends in photophysics related to the interaction of light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures. The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: -Light harvesting, energy conversion, photoinduced charge separation and transport in CNT based nanohybrids -CNT/polymer composites exhibiting photoactuation; and -Optical spectroscopy and structure of CNT/DNA complexes. Including original data and a short review of recent research, Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials makes this emerging field of photophysics and its applications available to academics and professionals working with carbon nanotube composites in fundamental and applied fields |
You may like...
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,294
Discovery Miles 52 940
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,257
Discovery Miles 32 570
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, …
Hardcover
R4,020
Discovery Miles 40 200
Encyclopedia of Spectroscopy and…
John C. Lindon, George E. Tranter, …
Hardcover
R59,229
Discovery Miles 592 290
The Encyclopedia of Mass Spectrometry…
Michael L. Gross, Richard M. Caprioli
Hardcover
R10,685
Discovery Miles 106 850
|