![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield as well as graduate students can grasp the importance and attractions of the research topic at hand. These are followed by reports of cutting-edge discoveries. This eighth volume covers a broad range of topics from this interdisciplinary research field, focusing on molecules interacting with ultrashort and intense laser fields, advanced technologies for the characterization of ultrashort laser pulses and their applications, laser plasma formation and laser acceleration.
A detailed study of the science, engineering and applications of terahertz technology, based on room-temperature solid-state devices, which are seen as the key technology for wider applications in this frequency range. The relative merits of electronic and optical devices are discussed and new device principles identified. Issues of terahertz circuit design, implementation and measurement are complemented by chapters on current and future applications in communications, sensing and remote surveillance. Audience: The unique coverage of all aspects of terahertz technology will appeal to both new and established workers in the field, as well as providing a survey for the interested reader.
This volume contains the proceedings of the first NATO Science Forum "Highlights of the Eighties and Future Prospects in Condensed Matter Physics" (sponsored by the NATO Scientific Affairs Division), which took place in September, 1990, in the pleasant surroundings provided by the Hotel du Palais at Biarritz, France. One hundred distinguished physicists from seventeen countries, including six Nobellaureates, were invited to participate in the four and a half day meeting. Focusing on three evolving frontiers: semiconductor quantum structures, including the subject of the quantumHall effect (QHE), high temperature superconductivity (HiTc) and scanning tunneling microscopy (STM), the Forum provided an opportunity to evaluate, in depth, each of the frontiers, by reviewing the progress made during the last few years and, more importantly, exploring their implications for the future. Though serious scientists are not "prophets," all of the participants showed a strong interest in this unique format and addressed the questions of future prospects, either by extrapolating from what has been known, or by a stretch of their "educated" imagination.
Detection of concealed explosives is a notoriously difficult problem, and many different approaches have been proposed to solve this problem. Nuclear quadrupole resonance (NQR) is unique in many ways. It operates in a safe AM radio frequency range, and it can remotely detect unique fingerprint (NQR spectrum) of many explosives, such as TNT or RDX. As such, the detection of target does not depend on the shape or material of the container, or the presence of metallic object such as triggers etc. Spectra of chemically similar compounds differ enough that their presence never causes interference or false alarms. Unfortunately, widespread use is prevented due to low sensitivity, radiofrequency interference from the noisy environment, and inability to detect liquid explosives. This book presents current state of the art of the attempts to overcome NQR sensitivity problem, either by increasing the strengths of signals generated, or by increasing the specificity of the technique through a better understanding of the factors that affect the quadrupolar parameters of specific explosives. The use of these specific quadrupolar parameters is demonstrated on signal processing techniques that can detect weak signals, which are hidden in a noisy background. The problem of differentiation of liquid explosives and benign liquids in closed containers is approached by measurements of different nuclear magnetic resonance (NMR) parameters. As shown, a couple of solutions has reached a prototype stage and could find their use in a near future."
This book provides tools well suited for the quantitative
investigation of semiconductor electron microscopy. These tools
allow for the accurate determination of the composition of ternary
semiconductor nanostructures with a spatial resolution at near
atomic scales. The book focuses on new methods including strain
state analysis as well as evaluation of the composition via the
lattice fringe analysis (CELFA) technique. The basics of these
procedures as well as their advantages, drawbacks and sources of
error are all discussed. The techniques are applied to quantum
wells and dots in order to give insight into kinetic growth effects
such as segregation and migration. In the first part of the book
the fundamentals of transmission electron microscopy are provided.
These are needed for an understanding of the digital image analysis
techniques described in the second part of the book. There the
reader will find information on different methods of
This text on precision frequency measurement and its key enabling techniques includes reviews written by some of the most experienced researchers in their respective fields. This text should prove useful to researchers just entering the field of frequency metrology and standards, or equally well to the experienced practitioner.
Extinction and standardization corrections to infrared measurements are of the utmost importance in astronomy. Various views on these concepts and problems of implementation in infrared photometry are discussed thoroughly and recommendations are presented. Among these are: the adoption of narrower broad-band "Johnson" filters that are better centered in the atmospheric water windows than is currently the case; the measurements of atmospheric water vapor content concurrent with the astronomical measurements; the use of appropriate atmospheric models to treat the extinction adequately; and the publication of complete details of the systemic passbands and their transformability to other systems. To conclude the volume, R. Bell summarizes and comments on the contributions to the symposium, and the editor adds a concluding postscript on post-meeting developments and perspectives.
Sputtering, the ejection of atoms or groups of atoms from the surface of a solid bombarded by energetic particles, is a widely observed phenomenon that has many applications in today's experimental physics and technology. This is the third and final volume of a comprehensive review on sputtering. Whereas the first two volumes deal primarily with physical aspects such as the theory of sputtering, experimentally observed sputtering yields and surface topography changes, this volume is devoted to the characteristic properties of the sputtered particles and technological applications of sputtering. The particles are characterized by their energy, mass, and angular distributions, along with their charge and excitation states, while the applications described in- clude surface and depth analysis, micromachining, and the production of surface coatings and thin films. As in the previous two volumes, the various chapters have been written by the main authorities in the field. The book addresses a broad audience: scientists active in the field will find the overview and background information they have long been seeking, while students and new comers to surface science and materials science will find a readable introduction to sputtering.
This work focuses on complementary crystallographic and spectroscopic areas of dynamic structural science, from papers presented at the 46th NATO sponsored course in Erice, Sicily 2013. These papers cover a range of material from background concepts to more advanced material and represent a fully inter-disciplinary collection of the latest ideas and results within the field. They will appeal to practising or novice crystallographers, both chemical and biological, who wish to learn more about modern spectroscopic methods and convergent advances and hence vice versa for experimental and computational spectroscopists.The chapters refer to the latest techniques, software and results and each chapter is fully referenced. The volume provides an excellent starting point for new comers in the emerging, multi-disciplinary area of time resolved science."
This monograph deals with ion induced electron emission from crystalline solids bombarded by fast ions. During the past decade, electron spectroscopy combined with the ion channeling technique has revealed various "messages" about ion solid and electron solid interactions carried by the emitted elec trons. While the ion induced electrons produced by binary encounter pro cesses are of primary interest in this book, closely related topics such as the emission of ion induced Auger electrons from crystal targets are also reviewed, with emphasis on their interdisciplinary aspects, for example, their relation to photoelectron diffraction. In addition to these topics, the book describes the underlying physics and experimental techniques so that it should provide useful information for students and scientists working in ion beam based re search and development in various areas of atomic and solid state physics, materials science, surface science, etc. I am much indebted to the gererations of students who have passed through my laboratory, since they have stimulated me with elementary but essential questions in various phases of the studies. I am also grateful to T. Azuma, Y. Kido, K. Kimura, H. Naramoto, and S. Seki for critical reading of the manuscript. Tsukuba, August 2001 Hiroshi Kudo Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1o Terminology and Table of Symbols . . . . . . . . . . . . . . . . . . . . . . . 5 2. 2. 1 Notes on Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 2 Frequently Used Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3. Binary Encounter Electron Emission . . . . . . . . . . . . . . . . . . . . . . 7 3. 1 Ion Electron Elastic Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. 2 Recoil Cross Section of Orbital Electrons . . . . . . . . . . . . . . . . . .
This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.com
This completely revised and enlarged English edition of the original Russianbook deals with the identification and separation of charged particles in high energy physics experiments. Proportional drift and streamer chambers as well as ionization measurements with cloud, spark, and ionization chambers are discussed. Both scientists and advanced undergraduate students specializing in high energy or nuclear physics will find useful information for planning and performing ionization measurements and their analyses.
76 2. Short Oligonucleotide Mass Analysis 76 2. 1. Method Outline 76 2. 2. Design of PCR Primers and Fragments for Analysis 78 2. 3. Typical PCR Reaction Conditions 79 3. Electrospray Ionisation Mass Spectrometry 79 Formation of Ions 3. 1. 79 3. 2. Tandem Mass Spectrometry 79 3. 3. Typical ESI-MS Settings for SOMA 80 4. Purification Procedures 80 4. 1. Phenol/Chloroform Extraction and Ethanol Precipitation 80 4. 2. In-line HPLC Purification 81 5. Genotyping Using SOMA 81 5. 1. APC Genotyping in Human Subjects 81 5. 2. APC Genotyping in Min Mice 85 5. Mutation Detection Using SOMA 86 6. 1. Analysis of p53 Mutations in Liver Cancer Patients 86 6. 1. 1. p53 Mutations in Liver Tumours 87 6. 1. 2. p53 Mutations in Plasma Samples 88 7. Advantages and Disadvantages of SOMA 89 8. Future Perspectives 90 9. Acknowledgements 91 10. References 91 CHAPTER 7 WV. Bienvenut, M. Muller, PM. Palagi, E. Gasteiger, M. Heller, E. Jung, M. Giron, R. Gras, S. Gay, PA. Binz, G J. Hughes, JC. Sanchez, RD. Appel, DF. Hochstrasser Proteomics and Mass Spectrometry: Some Aspects and Recent Developments 1. Introduction to Proteomics 93 2. Protein Biochemical and Chemical Processing Followed by Mass Spectrometric Analysis 94 2. 1. 2-DE Gel Protein Separation 95 Protein Identification Using Peptide Mass Fingerprinting and Robots 96 2. 2. 2. 2. 1. MALDI-MS Analysis 98 2. 2. 2. MS/MS Analysis 102 Improvement of the Identification by Chemical Modification of Peptides 106 2. 2. 3."
This monograph discusses collision-induced electron emission from nearly free-electron metals by ion or electron impact. This subject is, as is well known, of acute importance in understanding plasma-wall interactions in thermonuclear reactors. It is also the basis for one of the most exciting technological developments of the last few years - scanning electron miscroscopy. Several electron excitation mechanisms of electrons in the target are considered: excitation of single conduction and core electrons, excitation by plasmon decay and by Auger processes. Transport of inner excited electrons is simulated by the Boltzmann equation incorporating both elastic and inelastic collisions. The numerical calculation of scattering rates uses a dynamically screened Coulomb interaction. These results for the energy distributions of emerging electrons as well as the electron yield are compared with recent experimental measurements on electron emission from polycrystalline aluminum.
Fabrication technologies for nanostructured devices have been
developed recently, and the electrical and optical properties of
such nanostructures are a subject of advanced research.
Initially a subfield of solid state physics, the study of mesoscopic systems has evolved over the years into a vast field of research in its own right. Keeping track its rapid progress, this book provides a broad survey of the latest developments in the field. The focus is on statistics and dynamics of mesoscopic systems with special emphasis on topics like quantum chaos, localization, noise and fluctuations, mesoscopic optics and quantum transport in nanostructures. Written with nonspecialists in mind, this book will also be useful to graduate students wishing to familiarize themselves with this field of research.
Energy-Filtering Transmission Electron Microscopy (EFTEM) presents a summary of the electron optics, the electron-specimen interactions, and the operation and contrast modes of this new field of analytical electron microscopy. The electron optics of filter lenses and the progress in the correction of aberrations are discussed in detail. An evaluation of our present knowledge of plasmon losses and inner-shell ionisations is of increasing interest for a quantitative application of EFTEM in materials and life sciences. This can be realized not only by filtering the elastically scattered electrons but mainly by imgaging and analyzing with inelastically scattered electrons at different energy losses up to 2000 eV. The strength of EFTEM is the combination of the modes EELS, ESI, ESD and REM.
Photonic band gap crystals offer unique ways to tailor light and the propagation of electromagnetic waves. In analogy to electrons in a crystal, EM waves propagating in a structure with a periodically-modulated dielectric constant are organized into photonic bands separated by gaps in which propagating states are forbidden. Proposed applications of such photonic band gap crystals, operating at frequencies from microwave to optical, include zero- threshold lasers, low-loss resonators and cavities, and efficient microwave antennas. Spontaneous emission is suppressed for photons in the photonic band gap, offering novel approaches to manipulating the EM field and creating high-efficiency light-emitting structures. Photonic Band Gap Materials identifies three most promising areas of research. The first is materials fabrication, involving the creation of high quality, low loss, periodic dielectric structures. The smallest photonic crystals yet fabricated have been made by machining Si wafers along (110), and some have lattice constants as small as 500 microns. The second area is in applications. Possible applications presented are microwave mirrors, directional antennas, resonators (especially in the 2 GHz region), filters, waveguides, Y splitters, and resonant microcavities. The third area covers fundamentally new physical phenomena in condensed matter physics and quantum optics. An excellent review of recent development, covering theoretical, experimental and applied aspects. Interesting and stimulating reading for active researchers, as well as a useful reference for non-specialists.
The Advanced Study Institute on "Path Integrals and Their Applications in Quantum, Statistical, and Solid State Physics" was held at the University of Antwerpen (R.U.C.A.), July 17-30, 1977. The Institute was sponsored by NATO. Co-sponsors were: A.C.E.C. (Belgium), Agfa-Gevaert (Belgium), l'Air Li~uide BeIge (Belgium), Be1gonucleaire (Belgium), Bell Telephone Mfg. Co. (Belgium), Boelwerf (Belgium), Generale BankmaatschappiJ (Belgium), I.B.M. (Belgium), Kredietbank (Belgium), National Science Foundation (U.S.A.), Siemens (Belgium). A total of 100 lecturers and partici- pants attended the Institute. The development of path (or functional) integrals in relation to problems of stochastic nature dates back to the early 20's. At that time, Wiener succeeded in obtaining the fundamental solution of the diffusion e~uation using Einstein's joint probability of finding a Brownian particle in a succession of space intervals during a corresponding succession of time intervals. Dirac in the early 30's sowed the seeds of the path integral formulation of ~uantum mecha- nics. However, the major and decisive step in this direction was taken with Feynman's works in ~uantum and statistical physics, and quantum electrodynamicso The applications now extend to areas such as continuous mechanics, and recently functional integration methods have been employed by Edwards for the study of polymerized matter.
Measuring the hydrogen content in materials is important both for research and for various applications in material and surface sciences, such as hydrogen embrittlement of steel, controlled thermonuclear reaction first wall studies, and changed material properties caused by dissolved hydrogen. Hydrogen is the most difficult atomic species to analyze by traditional methods, but nuclear physics methods are particularly suited for this purpose. President of the Uzbek SSR Academy of Sciences P.K. Khabibullaev and Professor B.G. Skorodumov discuss in this book the characteristics of these methods, such as lower detection limits, selectivity in respect to different isotopes, accuracy, depth resolution and maximum detection depth. Examples of applications that are dealt with include the determination of material humidity, the dating of objects, the study of hydrogen diffusion including non-stationary processes, and the investigation of changes in material properties like superconductivity, plasticity and electrical properties due to contamination by hydrogen.
During recent years there has been increasing interest in the value of a number of chemical and physical-chemical analytical methods for the detection and characterization of microorganisms. Furthermore, such methods are currently used in studies on microbial metabolic processes, on the role of microorganisms in the turnover of inorganic and organic compounds, and on the impact on environmental changes by microbial activity. Moreover, the introduction of some of these methods not only shortens the analytical time period compared to *'traditional" techniques, but also improves the analytical quality. Mass spectrometry (MS) combined with chromatographic inlet systems, particularly gas chromatography (GC), belongs to those methods which during recent years have established their value for the above-mentioned purposes. The present volume starts with basic chapters on the principles for MS and common inlet systems, particulary Gc. It discusses applications of these techniques to a number of microbiological disciplines, e.g., ecologi cal and medical microbiology. Emphasis is laid on organic compound classes vii viii / PREFACE of special relevance to microbiology, e.g., volatiles, lipids, amino acids, peptides and carbohydrates. Some compound classes of a more general biochemical rather than specific microbiological importance, e.g., steroids and nucleotides, are dealt with briefly. The editors wish to thank all those who have contributed to this book. We hope it will stimulate further research in this futuristic field and will be of practical value. |
You may like...
Combining Experimentation and Theory - A…
Enric Trillas, Piero P Bonissone, …
Hardcover
R4,078
Discovery Miles 40 780
Point-of-Care Testing, An Issue of…
Kent Balanis Lewandrowski
Hardcover
R1,661
Discovery Miles 16 610
Urinalysis and Body Fluids
Susan King Strasinger, Marjorie Schaub Di Lorenzo
Paperback
The Path from Biomarker Discovery to…
Federico Goodsaid, William B. Mattes
Paperback
R1,134
Discovery Miles 11 340
Micro and Nano Flow Systems for…
Michael W. Collins, Carola S Koenig
Hardcover
Experimental Metastasis: Modeling and…
Anastasia Malek
Hardcover
|