![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
The great advantage of coincidence measurements is that by suitable choice of the kinematical and geometrical arrangement one may probe delicate physical effects which would be swamped in less differential experiments. The measurement of the triple dif ferential and higher-order cross sections presents enormous technical difficulties, but refined experiments of this type provide an insight into the subtleties of the scattering process and offer a welcome, if severe, test of the available theoretical models. The last few years have been an exciting time to work in the field and much has been learned. Profound insights have been gleaned into the basic Coulomb few body problem in atomic physics: the experimental study of the fundamental (e,2e) processes on hydrogen and helium targets continues to add to our knowledge and indeed to challenge the best of our theoretical models; significant advances have been made in the understanding of the "double excitation problem," that is the study of ionization processes with two active target electrons: important measurements of (e,3e), (, ), 2e), excitation-ionization and excitation autoionization have been reported and strides have been made in their theoretical description; the longstanding discrepancies between theory and experiment for relativistic (e,2e) processes were resolved, spin dependent effects predicted and ob served and the first successful coincidence experiments on surfaces and thin films were announced. Theory and experiment have advanced in close consort. The papers pre sented here cover the whole gambit of research in the field. Much has been achieved but much remains to be done."
This book collects the lectures given at the NATO Advanced Study Institute on "Atoms in Strong Fields," which took place on the island of Kos, Greece, during the two weeks of October 9-21,1988. The designation "strong field" applies here to an external electromagnetic field that is sufficiently strong to cause highly nonlinear alterations in atomic or molecular struc ture and dynamics. The specific topics treated in this volume fall into two general cater gories, which are those for which strong field effects can be studied in detail in terrestrial laboratories: the dynamics of excited states in static or quasi-static electric and magnetic fields; and the interaction of atoms and molecules with intense laser radiation. In both areas there exist promising opportunities for research of a fundamental nature. An electric field of even a few volts per centimeter can be very strong on the atom ic scale, if it acts upon a weakly bound state. The study of Rydberg states with high reso lution laser spectroscopic techniques has made it possible to follow the transition from weak-field to strong-field behavior in remarkable detail, using static fields of modest lab oratory strength; in the course of this transition the atomic system evolves from one which can be thoroughly understood in terms of field-free quantum numbers, to one which cannot be meaningfully associated at all with the zero-field states of the atom."
Rapid thermal processing has contributed to the development of single wafer cluster processing tools and other innovations in integrated circuit manufacturing environments. Borisenko and Hesketh review theoretical and experimental progress in the field, discussing a wide range of materials, processes, and conditions. They thoroughly cover the work of international investigators in the field.
This book is the second in a series of scientific textbooks designed to cover advances in selected research fields from a basic and general viewpoint, so that only limited knowledge is required to understand the significance of recent developments. Further assistance for the non-specialist is provided by the summary of abstracts in Part 2, which includes many of the major papers published in the research field. Crystal Growth of Semiconductor Materials has been the subject of numerous books and reviews and the fundamental principles are now well-established. We are concerned chiefly with the deposition of atoms onto a suitable surface - crystal growth - and the generation of faults in the atomic structure during growth and subsequent cooling to room temperature - crystal defect structure. In this book I have attempted to show that whilst the fundamentals of these processes are relatively simple, the complexities of the interactions involved and the individuality of different materials systems and growth processes have ensured that experimentally verifiable predictions from scientific principles have met with only limited success - good crystal growth remains an art. However, recent advances, which include the reduction of growth temperatures, the reduction or elimination of reactant transport variables and the use of better-controlled energy sources to promote specific reactions, are leading to simplified growth systems.
The technique of ion implantation has become a very useful and stable technique in the field of semiconductor device fabrication. This use of ion implantation is being adopted by industry. Another important application is the fundamental study of the physical properties of materials. The First Conference on Ion Implantation in Semiconductors was held at Thousand Oaks, California in 1970. The second conference in this series was held at Garmish-Partenkirchen, Germany, in 1971. At the third conference, which convened at Yorktown Heights, New York in 1973, the emphasis was broadened to include metals and insulators as well as semiconductors. This scope of the conference was still accepted at the fourth conference which was held at Osaka, Japan, in 1974. A huge number of papers had been submitted to this conference. All papers which were presented at the Fourth International Conference on Ion Implantation in Semiconductors and Other Materials are included in this proceedings. The success of this conference was due to technical presentations and discussions of 224 participants from 14 countries as well as to financial support from many companies in Japan. On behalf of the committee, I wish to thank the authors for their excellent papers and the sponsors for their financial support. The International Committee responsible for advising this conference consisted of B.L. Crowder, J.A. Davies, G. Dearna1ey, F.H. Eisen, Ph. G1otin, T. Itoh, A.U. MacRae, J.W. Mayer, S. Namba, I. Ruge, and F.L. Vook.
In this text, Shigeji Fujita and Salvador Godoy guide first and second-year graduate students through the essential aspects of superconductivity. The authors open with five preparatory chapters thoroughly reviewing a number of advanced physical concepts-such as free-electron model of a metal, theory of lattice vibrations, and Bloch electrons. The remaining chapters deal with the theory of superconductivity-describing the basic properties of type I, type II compound, and high-Tc superconductors as well as treating quasi-particles using Heisenberg's equation of motion. The book includes step-by-step derivations of mathematical formulas, sample problems, and illustrations.
The textbook we offer to the reader is based on a two-term course of lec tures, "Electromagnetic Response of Material Media," that the authors gave for a number of years to the final-year students of the Physics Depart ment of Moscow University. This course built on courses in quantum electronics, nonlinear optics and theoretical fundamentals of quantum radiophysics; students are as sumed to have mastered the fundamentals of quantum mechanics, laser physics and nonlinear optics. The essential core of the course, and hence of the book, is the current general theory of electromagnetic response of a nonrelativistic medium. The main aspects are presented in Chapters 1 and 2. The second part is devoted to more traditional topics which students learn in this course of lectures and also in the course "Condensed Matter Physics" for students who choose to major in radiophysics and laser physics; this course is also taught by the authors at the Physics Department. This volume was intended as a text for students and, as such, does not cite original publications. We decided to provide a list of additional recommended literature, mostly of well known, easily accessible textbooks.
This Advanced Study Institute on the topic of SOLID STATE MICROBATTERIES is the third and final institute on the general theme of a field of study now termed "SOLID STATE IONICS". The institute was held in Erice, Sicily, Italy, 3 - 15 July 1988. The objective was to assemble in one location individuals from industry and academia expert in the fields of microelectronics and solid state ionics to determine the feasibility of merging a solid state microbattery with microelectronic memory. Solid electrolytes are in principle amenable to vapor deposition, RF or DC sputtering, and other techniques used to fabricate microelectronic components. A solid state microbattery 1 1 mated on the same chip carrier as the chip can provide on board memory backup power. A solid state microbattery assembled from properly selected anode/solid electrolyte/cathode materials could have environmental endurance properties equal or superior to semiconductor memory chips. Lectures covering microelectronics, present state-of-art solid state batteries, new solid electrolyte cathode materials, theoretical and practical techniques for fabrication of new solid electrolytes, and analytical techniques for study of solid electrolytes were covered. Several areas where effort is required for further understanding of materials in pure form and their interactions with other materials at interfacial contact points were identified. Cathode materials for solid state batteries is one particular research area which requires attention. Another is a microscopic model of conduction in vitreous solid electrolytes to enhance the thermodynamic macroscopic Weak ~lectrolyte Iheory (WET).
For several years, core level spectroscopies and other, c\osely related, electron spectroscopies have provided very useful information about the atomic composition, the geometric structure, and the electronic structure of condensed matter. Recently, these spectroscopies have also been used for the study of magnetic properties; such studies have a great potential to extend our knowledge and understanding of magnetic systems. This volume collects the lectures presented at the NATO Advanced Study Institute on "Core Level Spectroscopies for Magnetic Phenomena: Theory and Experiment" held at the Ettore Majorana Centre, Erice, Sicily, on 15 to 26 May 1994. The topics considered at the ASI covered a wide range of subjects involving the use of core-level and related spectroscopies to study magnetic phenomena. There are a large and growing number of applications of these spectroscopies to the study of magnetic materials; an important objective of the ASI was to stimulate further growth. The topics covered at the ASI can be placed into three general groups: 1) fundamental principles of core level spectroscopies; 2) basic aspects of magnetic phenomena; and, 3) the combination of the two previous topics embodied in applications of the spectroscopies to magnetism. In all three groups, theoretical interpretations as weH as experimental measurements were presented, often both of these aspects were covered in a single lecture or series oflectures. The theoretical treatments ofthe spectroscopies as weH as of the magnetic phenomena help to establish a framework for understanding many of the experimental measurements on magnetic materials.
The field of solid state ionics is multidisciplinary in nature. Chemists, physicists, electrochimists, and engineers all are involved in the research and development of materials, techniques, and theoretical approaches. This science is one of the great triumphs of the second part of the 20th century. For nearly a century, development of materials for solid-state ionic technology has been restricted. During the last two decades there have been remarkable advances: more materials were discovered, modem technologies were used for characterization and optimization of ionic conduction in solids, trial and error approaches were deserted for defined predictions. During the same period fundamental theories for ion conduction in solids appeared. The large explosion of solid-state ionic material science may be considered to be due to two other influences. The first aspect is related to economy and connected with energy production, storage, and utilization. There are basic problems in industrialized countries from the economical, environmental, political, and technological points of view. The possibility of storing a large amount of utilizable energy in a comparatively small volume would make a number of non-conventional intermittent energy sources of practical convenience and cost. The second aspect is related to huge increase in international relationships between researchers and exchanges of results make considerable progress between scientists; one find many institutes joined in common search programs such as the material science networks organized by EEC in the European countries.
Terahertz science and technology is attracting great interest due to its application in a wide array of fields made possible by the development of new and improved terahertz radiation sources and detectors. This book focuses on the development and characterization of one such source - namely the semi-large aperture photoconducting (PC) antenna fabricated on Fe-doped bulk Ga0.69In0.31As substrate. The high ultrafast carrier mobility, high resistivity, and subpicosecond carrier lifetime along with low bandgap make Ga0.69In0.31As an excellent candidate for PC antenna based THz emitter that can be photoexcited by compact Yb-based multiwatt laser systems for high power THz emission. The research is aimed at evaluating the impact of physical properties of a semi-large aperture Ga0.69In0.31As PC antenna upon its THz generation efficiency, and is motivated by the ultimate goal of developing a high-power terahertz radiation source for time-domain terahertz spectroscopy and imaging systems.
During the past decade the theoretical physics community has learned how to evaluate accurately polarizabilities and susceptibilities for many-electron systems such as atoms, solids, and liquids. The most accurate numerical technique employs a method often called the Time-Dependent Local Density Approximation, which is abbreviated TDLDA. The present volume is a review of recent research on the theory of po larizabilities and susceptibilities. Both authors have been doing these cal culations. However, this review surveys the entire field, summarizing the research of many contributors. The application of an external field, either ac or de, will induce a dipole moment which can be calculated and compared with experiment. For mod erately strong fields, both linear and nonlinear processes contribute to the moment. We cover topics such as polarizability, hyperpolarizability, pho toionization, phonons, and piezoelectricity. Density functional theory in the Local Density Approximation (LDA) has been shown to be a very accurate method for calculating ground state prop erties of electronic system. For static external fields, the induced moments are properties of the ground state. Then the calculation of the polarizability . is very accurate. For ac fields, the moment is not part of the ground state. However, the TDLDA methods are still very accurate."
This series, Finite Systems and Multiparticle Dynamics, is intended to provide timely reviews of current research topics, written in a style sufficiently pedagogic so as to allow a nonexpert to grasp the underlying ideas as well as understand technical details. The series is an outgrowth of our involvement with three interdis ciplinary activities, namely, those arising from the American Physical Society's Topical Group on Few Body Systems and Multiparticle Dynam ics, the series of Gordon Research Conferences first known by the title "Few Body Problems in Chemistry and Physics" and later renamed "Dynamics of Simple Systems in Chemistry and Physics," and the series of Sanibel Symposia, sponsored in part by the University of Florida. The vitality of these activities and the enthusiastic response to them by researchers in various subfields of physics and chemistry have convinced us that there is a place--even a need-for a series of timely reviews on topics of interest not only to a narrow band of experts but also to a broader, interdisciplinary readership. It is our hope that the emphasis on pedagogy will permit at least some of the books in the series to be useful in graduate-level courses. Rather than use the adjective "Few-Body" or "Simple" to modify the word "Systems" in the title, we have chosen "Finite. " It better expresses the wide range of systems with which the reviews of the series may deal.
Light Microscopic Analysis of Mitochondrial Heterogeneity in
Cell Populations and Within Single Cells, by S. Jakobs, S. Stoldt,
and D. Neumann Advanced Microscopy of Microbial Cells, by J. A. J. Haagensen, B. Regenberg, and C. Sternberg * Algebraic and Geometric Understanding of Cells, Epigenetic Inheritance of Phenotypes Between Generations, by K. Yasuda * Measuring the Mechanical Properties of Single Microbial Cells,
by C. R. Thomas, J. D. Stenson, and Z. Zhang Single Cell Analytics: Pushing the Limits of the Doable, * Resolution of Natural Microbial Community Dynamics by Community
Fingerprinting, Flow Cytometry and Trend Interpretation Analysis,
by P. Bombach, T. Hubschmann, I. Fetzer, S. Kleinsteuber, R. Geyer,
H. Harms, and S. Muller H.M. Davey, and C.L. Davey * From Single Cells to Microbial Population Dynamics: Modelling in Biotechnology Based on Measurements of Individual Cells, by T. Bley"
The NATO Advanced Study Institute on "Electronic Structure of Polymers and Molecular Crystals" was held at the Facultes Universi taires de Namur (F.U.N.) from September 1st till September 14th, 1974. We wish to express our appreciation to the NATO Scientific Affairs Division whose generous support made this Institute possible and to the Facultes Universitaires de Namur and the Societe Chimique de Belgique which provided fellowships and travel grants to a number of students. This volume contains the main lectures about the basic principles of the field and about different recent developments of the theory of the electronic structure of polymers and molecular crystals. The school started with the presentation of the basic SCF-LCAO theory of the electronic structure of periodic polymers and molecular crystals (contributions by Ladik, Andre & Delhalle) showing how a combination of quantum chemical and solid state physical methods can provide band structures for these systems. The numerical aspects of these calculations were also discussed. Lectures by Mahan have shown how optical properties of molecular crystals can be interpreted on the basis of the exciton theory. Little has reviewed the present status of the hypothesis about excitonic superconductivity and the different approaches to synthesize a superconductive polymer. McCubbin in his first series of lectures has given a very precise group theoretical treatment of the symmetry properties of polymers. Atkins' lectures have covered both the theoretical aspects of X-ray structure determination and its application to different polymers."
The systematic study of defects in semiconductors began in the early fifties. FrQm that time on many questions about the defect structure and properties have been an swered, but many others are still a matter of investigation and discussion. Moreover, during these years new problems arose in connection with the identification and char acterization of defects, their role in determining transport and optical properties of semiconductor materials and devices, as well as from the technology of the ever in creasing scale of integration. This book presents to the reader a view into both basic concepts of defect physics and recent developments of high resolution experimental techniques. The book does not aim at an exhaustive presentation of modern defect physics; rather it gathers a number of topics which represent the present-time research in this field. The volume collects the contributions to the Advanced Research Workshop "Point, Extended and Surface Defects in Semiconductors" held at the Ettore Majo rana Centre at Erice (Italy) from 2 to 7 November 1988, in the framework of the International School of Materials Science and Technology. The workshop has brought together scientists from thirteen countries. Most participants are currently working on defect problems in either silicon submicron technology or in quantum wells and superlattices, where point defects, dislocations, interfaces and surfaces are closely packed together."
The Advanced Study Institute of which this volume is the proceedings was held at the University of Exeter during 24 August to 6 September 1975. There were seventy participants of whom eighteen were lecturers and members of the advisory committee. All NATO countries except Holland, Iceland and Portugal were re presented. In addition a small number of participants came from non-NATO countries Japan, Ireland and Switzerland. An aim of the organising committee was to bring together scientists of wide interests and expertise in the defect structure of insulators and semiconductors. Thus major emphases in the pro gramme concerned the use of spectroscopy and microscopy in revealing the structure of point defects and their aggregates, line defects as well as planar and volume defects. The lectures revealed that in general little is known of the fate of the interstitial in most irradiated solids. Nor are the dynamic properties of defects under stood in sufficient detail that one can state how point defects cluster and eventually become macroscopic defects. Although this book faithfully reproduces the material covered by the invited speakers, it does not really follow the flow of the lectures. This is because it seemed advisable for each lecturer to provide a single self-contained and authoritative manuscript, rather than a series of short articles corresponding to the lectures."
Surface physics and chemistry have in recent years become one of the most active fields in solid state research. A number of techniques have been developed, and both the experimental aspect and the correlated theory are evolving at an extremely fast rate. Electron and ion spectroscopy are of major importance in this development. In this volume, which contains edited and extended versions of eight sets of lectures given at the NATO Advanced Study Institute held at Ghent, Belgium, from August 29 to September 9, 1977, a re view of the state of the art in these fields is given from both an experimental and a theoretical point of view. Electron emission techniques such as UPS (ultraviolet photoemission spectroscopy), XPS (x-ray photoemission spectroscopy), and AES (Auger electron spectroscopy) constitute the major part of this volume, reflecting the fact that they continue to be the most widely applied surface techniques. Recent developments in the application of synchrotron radiation to angle-resolved photoelectron spectroscopy are extensively covered, from an experimental point of view by Prof. W. E. Spicer (Stanford University, U.S.A.) and from a theoretical point of view by Dr. A. Liebsch (Kernforschungsanlage Julich, Germany). Emphasis is put on the study of energy bands in layered structures, and on chemisorption on well-defined surfaces. Chemisorption and catalysis on metals is treated in detail by Prof. G. Ertl (Universitat Munchen, Germany). This chapter contains a review of the application of the different surface techniques to specific surface systems."
Proceedings of a Summer School at Michigan State University held in East Lansing, Michigan, July 17-19, 1994
Principles and Applications of ESR Spectroscopy fills the gap between the detailed monographs in ESR spectroscopy and the general textbooks in molecular physics, physical chemistry, biochemistry or spectroscopy. The latter only briefly explain the underlying theory and do not provide details about applications, while the currently available ESR textbooks are primarily focused on the technique as such. This text is based upon the authors' long experience of teaching the subject to a mixed audience, in the extreme case ranging from physics to biology. The potential of the method is illustrated with applications in fields such as molecular science, catalysis and environmental sciences, polymer and materials sciences, biochemistry and radiation chemistry/physics. Theoretical derivations have in general been omitted, as they have been presented repeatedly in previous works. The necessary theory is instead illustrated by practical examples from the literature.
Since 1963 the Research Materials Information Center has been answering inquiries on the availability, preparation, and properties of ultrapure inorganic research specimens. It has been possible to do this with reasonable efficiency by searching an automated coded microfilm collection of the report and open literature and of data sheets and question naires provided by commercial and research producers of pure materials. With the growth of the collection to over 70,000 documents and the increase in the demand for more general background information, it has been necessary to compile bibliographies on an increasing variety of subjects. These have been used as indexes to the microfilmed documents for more efficient searching, and in the past distributed in response to individual requests. However, their size and number no longer permit so casual and uneconomic a method of distribution. The "ORNL Solid State Physics Literature Guides" is a practical alternative. Organization The subject organization of the bibliography is given by the Table of Contents. Each section is preceded by a collection of reviews, bibliographies, and "general" papers (i.e., those dealing with methods or equipment rather than single materials, or with such a wide variety of materials that no subsection was appropriate). Coverage is generally from 1960 to mid-1970. Emphasis is on inorganic materials."
Low-dimensional materials are of fundamental interest in physics and chemistry and have also found a wide variety of technological applica tions in fields ranging from microelectronics to optics. Since 1986, several seminars and summer schools devoted to low-dimensional systems have been supported by NATO. The present one, Physics, Fabrication and Applications of Multilayered structures, brought together specialists from different fields in order to review fabrication techniques, charac terization methods, physics and applications. Artificially layered materials are attractive because alternately layering two (or more) elements, by evaporation or sputtering, is a way to obtain new materials with (hopefully) new physical properties that pure materials or alloys do not allow. These new possibilities can be ob tained in electronic transport, optics, magnetism or the reflectivity of x-rays and slow neutrons. By changing the components and the thickness of the layers one can track continuously how the new properties appear and follow the importance of the multilayer structure of the materials. In addition, with their large number of interfaces the study of inter face properties becomes easier in multilayered structures than in mono layers or bilayers. As a rule, the role of the interface quality, and also the coupling between layers, increases as the thickness of the layer decreases. Several applications at the development stage require layer thicknesses of just a few atomic layers."
Clinical pharmacology plays an important role in today's medicine. Due to the high sensitivity, selectivity, and affordability of a mass spectrometer (MS), the high performance liquid chromatography - mass spectrometry (LC-MS) analytical technique is widely used in the determination of drugs in human biological matrixes for clinical pharmacology. Specifically, LC-MS is used to analyze: anticancer drugs antidementia drugs antidepressant drugs antiepileptic drugs antifundal drug antimicrobial drugs antipsychotic drugs antiretroviral drugs anxiolytic/hypnotic drugs cardiac drugs drugs for addiction immunosuppressant drugs mood stabilizer drugs This book will primarily cover the various methods of validation for LC-MS techniques and applications used in modern clinical pharmacology.
High temperature superconductivity (HTSC) hast he potential todramatically impact many commercial markets, including the electric power industry. Since 1987, the Electric Power Research Institute (EPRI) has supported aprogram to develop HTSC applications fort he power industry. The purpose ofEPRI is to manage technical research and development programs to improve power production, distribution, and use. The institute is supported by the voluntary contributions ofs ome7 00 electric utilities and has over 600 utility technical experts as advisors. One objectiveo f EPRI's HTSC program is to ed ucate utility engineers andexecutives on the technical issues related to HTSC materials and the supporting technologies needed for their application. To accomplish this, Argonne National Laboratory was commissioned to preparea series of monthly re ports that would explain th e significanceo f recent advances in HTSC. Acomponent o f each report was a tutorial on some aspect of the HTSC field. Topics ranged from the various ways that thin films are deposited tot he mechanisms used to operatem ajor cryogenic systems. The tutorials became very popularw ithin the utility industry. Surprisingly, the reports also became popular with scientists at universities, corporate labo ratories, and thenational laboratories. A lthough these researchers are quite experienced in one aspect of the technology, they are nots ostron g inothers. Itw ast he diversity and thoroughness ofthe tutorials that made them so valuable.
In this reference, the author thoroughly reviews the current state of condensed phosphate chemistry. A unique feature of this volume is an examination of the recent developments in X-ray structural techniques, reporting on fundamental results obtained through their use. Enhanced by comprehensive tables reporting crystal data, chapters identify and characterize more than 2,000 compounds. Additional features include a concise survey of the historical development of condensed phosphate chemistry; the presently accepted classification system; a review of each family of condensed phosphates and much more. |
You may like...
Organizational Reliability - Human…
Agnieszka Bienkowska, Katarzyna Tworek, …
Paperback
R1,359
Discovery Miles 13 590
|