![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
The reader is provided with information about methods of calibration of light sources and photodetectors as well as responsiveness of spectral instruments ranging from near infrared to vacuum UV spectral, 1200 - 100 nm, and radiation intensities of up to several quanta per second in absolute and arbitrary units. The author describes for the first time original methods of measurements they created and draws upon over 40 years of experience in working with light sources and detectors to provide accurate and precise measurements. This book is the first to cover these aspects of radiometry and is divided into seven chapters that examine information about terminology, units, light sources and detectors, methods, including author's original ones, of absolute calibration of detectors, spectral instruments responsiveness, absolute measurements of radiation intensity of photoprocesses, and original methods of their study. Of interest to researchers measuring; luminescence spectra, light intensities from IR to vacuum UV, spectral range in wide-light intensity ranges, calibrate light sources and detectors, absolute or relative quantum yields of photoprocess determination.
The book is based on lectures presented on the International Summer School on Biophysics held in Croatia in September 2009. The advantage of the School is that it provides advanced training in very broad scope of areas related to biophysics contrary to other similar schools or workshops that are centered mainly on one topic or technique. In this volume, tenth in the row, the papers in the field of biophysics are presented. The topics are biological phenomena from single protein to macromolecular aggregations structure by using variant physical methods (NMR, EPR, FTIR, Mass Spectrometry, etc.). The interrelationship of supramolecular structures and their functions is enlightened by applications of principals of these physical methods in the biophysical and molecular biology context.
Device Architecture and Materials for Organic Light-Emitting Devices focuses on the design of new device and material concepts for organic light-emitting devices, thereby targeting high current densities and an improved control of the triplet concentration. A new light-emitting device architecture, the OLED with field-effect electron transport, is demonstrated. This device is a hybrid between a diode and a field-effect transistor. Compared to conventional OLEDs, the metallic cathode is displaced by one to several micrometers from the light-emitting zone, reducing optical absorption losses. The electrons injected by the cathode accumulate at an organic heterojunction and are transported to the light-emission zone by field-effect. High mobilities for charge carriers are achieved in this way, enabling a high current density and a reduced number of charge carriers in the device. Pulsed excitation experiments show that pulses down to 1 s can be applied to this structure without affecting the light intensity, suggesting that pulsed excitation might be useful to reduce the accumulation of triplets in the device. The combination of all these properties makes the OLED with field-effect electron transport particularly interesting for waveguide devices and future electrically pumped lasers. In addition, triplet-emitter doped organic materials, as well as the use of triplet scavengers in conjugated polymers are investigated.
This thesis presents the theory of three key elements of optical spectroscopy of the electronic excitations in bilayer graphene: angle-resolved photoemission spectroscopy (ARPES), visible range Raman spectroscopy, and far-infrared (FIR) magneto-spectroscopy. Bilayer graphene (BLG) is an atomic two-dimensional crystal consisting of two honeycomb monolayers of carbon, arranged according to Bernal stacking. The unperturbed BLG has a unique band structure, which features chiral states of electrons with a characteristic Berry phase of 2$\pi$, and it has versatile properties which can be controlled by an externally applied transverse electric field and strain. It is shown in this work how ARPES of BLG can be used to obtain direct information about the chirality of electron states in the crystal. The author goes on to describe the influence of the interlayer asymmetry, which opens a gap in BLG, on ARPES and on FIR spectra in a strong magnetic field. Finally, he presents a comprehensive theory of inelastic Raman scattering resulting in the electron-hole excitations in bilayer graphene, at zero and quantizing magnetic fields. This predicts their polarization properties and peculiar selection rules in terms of the inter-Landau-level transitions.
This text on the electrical, optical, magnetic, and thermal properties of materials stresses concepts rather than mathematical formalism. Suitable for advanced undergraduates, it is intended for materials and electrical engineers who want to gain a fundamental understanding of alloys, semiconductor devices, lasers, magnetic materials, and so forth. The book is organized to be used in a one-semester course; to that end each section of applications, after the introduction to the fundamentals of electron theory, can be read independently of the others. Many examples from engineering practice serve to provide an understanding of common devices and methods. Among the modern applications covered are: high-temperature superconductors, optoelectronic materials, semiconductor device fabrication, xerography, magneto-optic memories, and amorphous ferromagnetics. The fourth edition has been revised and updated with an emphasis on the applications sections, which now cover devices of the next generation of electronics.
The field of Atomic and Molecular Physics (AMP) has reached significant advances in high-precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy, astrophysics, fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, postgraduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighboring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) Tokomak plasma machine, which need accurate AMP data.
This thesis describes a new approach for cell analysis by the rapid developing microfluidic technology. The nominee has made great contributions to develop a new analysis platform which combined microfluidic devices with mass spectrometry to determine the trace compounds secreted by cells. Based on this analysis platform, she studied the specific cell secreting behaviors under controlled microenvironment, of which the secretion compounds were qualified and semi-quantified by mass spectrometry. A novel cell sorting device integrated homogenous porous PDMS membrane was invented to classify cells from real samples based on the size difference. The nominee further studied the signal transmission between different cells, and the signal chemicals were qualitative and quantitative monitored by the analysis platform. This indicates the potential significant application of the new cell analysis platform in medicine screening and early diagnosis.
Simple carbohydrates, complex oligosaccharides and polysaccharides all belong to a class of ubiquitous (macro)molecules that exhibit a wide range of biological functions, and the recent advent of enhanced enzymatic, chemical and analytical tools used to study these sugars has inaugurated a genuine explosion in the field of glycomics. Specifically, it has led to a deeper understanding of how specific sugar structures modulate cellular phenotypes, and that breakthrough has led to the discovery of new pharmaceuticals for the treatment of many serious diseases, such as cancer. The subsequent rapid expansion of this research holds high promise for future therapeutic regimens, and capillary electrophoresis (CE) refers to the range of related separation techniques that are integral to this vital research. CE uses narrow-bore fused-silica capillaries to separate a complex array of large and small molecules, and Capillary Electrophoresis of Carbohydrates offers a comprehensive look at the latest breakthroughs and improvements in CE and CE techniques applied to monosaccharides up to complex oligosaccharides and polysaccharides. It begins with an overview of the application of CE and CE- mass spectrometric in the analysis of simple carbohydrates without any previous derivatization step before discussing various detection techniques such as spectrophotometric detection, electrochemical detection and other less common techniques. It then covers in detail an array of related topics and numerous applications. It is an essential text for anyone exploring the myriad possibilities of this rapidly expanding field.
This book offers a balanced mixture of practice-oriented information and theoretical background as well as numerous references, clear illustrations, and useful data tables. Problems and solutions are accessible via a special website. This new edition has been completely revised and extended; it now includes three new chapters on tandem mass spectrometry, interfaces for sampling at atmospheric pressure, and inorganic mass spectrometry.
Proceedings of the Eleventh Latin American Conference on the Applications of the Moessbauer Effect, La Plata, Argentina, 9-14 November 2008. The broad scope of the Applications of the Moessbauer Effect to interdisciplinary subjects makes this volume an outstanding source of information to researchers and graduate students, who will find the unique results of Moessbauer spectroscopy a valuable aid and complement to their research in conjunction with other techniques. In this volume, applications to mineralogy, catalysis, soil science, amorphous materials, nanoparticles, magnetic materials, nanotechnology, metallurgy, corrosion, and magnetism, have been put together in original works produced by invited speakers and different research teams across the continent.
To anyone who is interested in surface chemical analysis of materials on the nanometer scale, this book is prepared to give appropriate information. Based on typical application examples in materials science, a concise approach to all aspects of quantitative analysis of surfaces and thin films with AES and XPS is provided. Starting from basic principles which are step by step developed into practically useful equations, extensive guidance is given to graduate students as well as to experienced researchers. Key chapters are those on quantitative surface analysis and on quantitative depth profiling, including recent developments in topics such as surface excitation parameter and backscattering correction factor. Basic relations are derived for emission and excitation angle dependencies in the analysis of bulk material and of fractional nano-layer structures, and for both smooth and rough surfaces. It is shown how to optimize the analytical strategy, signal-to-noise ratio, certainty and detection limit. Worked examples for quantification of alloys and of layer structures in practical cases (e.g. contamination, evaporation, segregation and oxidation) are used to critically review different approaches to quantification with respect to average matrix correction factors and matrix relative sensitivity factors. State-of-the-art issues in quantitative, destructive and non-destructive depth profiling are discussed with emphasis on sputter depth profiling and on angle resolved XPS and AES. Taking into account preferential sputtering and electron backscattering corrections, an introduction to the mixing-roughness-information depth (MRI) model and its extensions is presented.
This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes laboratory exercises.
This NATO-ASIinstallment is designed to provide an advanced overview for doctoral and post-doctoral candidates of the state-of-the-art technologies for bio-detection. The main objective of the work aims at providingreaders with the latest developments necessary to successfully understand the CBRN Agents and their associated biotechnologies. The core methods focused on aremass spectrometry (including chromatographic and electrophoretic separation) and comparisons to spectroscopic, immunological and molecular analysis of chemical, biological and nuclear agents."
This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.
Proceedings of the 9th Latin American Conference on the Applications of the Moessbauer Effect, LACAME 2004, held in Mexico City, Mexico, 19-24 September 2004. This volume demonstrates the way in which researchers, on a wide range of topics, many interdisciplinary, find the applications of the Moessbauer Effect an outstanding method whose results, sometimes unique, complements and improves the information obtained by other techniques to deepen the understanding of the matter under research. This volume comprises research papers, reviews, and short communications recording original investigations on applications to diverse areas like archaeology, metallurgy, soil science, geology, industrial applications, new instrumentation, corrosion, and chemical applications. The papers present the latest scientific work of various regional investigators and of the invited speakers from abroad that have brought their perspectives to the meeting.
TiO2 Nanotube Arrays: Synthesis, Properties, and Applications is the first book to provide an overview of this rapidly growing field. Vertically oriented, highly ordered TiO2 nanotube arrays are unique and easily fabricated materials with an architecture that demonstrates remarkable charge transfer as well as photocatalytic properties. This volume includes an introduction to TiO2 nanotube arrays, as well as a description of the material properties and distillation of the current research. Applications considered include gas sensing, heterojunction solar cells, water photoelectrolysis, photocatalytic CO2 reduction, as well as several biomedical applications. Written by leading researchers in the field, TiO2 Nanotube Arrays: Synthesis, Properties, and Applications is a valuable reference for chemists, materials scientists and engineers involved with renewable energy sources, biomedical engineering, and catalysis, to cite but a few examples.
Preface to Second Edition Several new topics have been added, some small errors have been corrected and some new references have been added in this edition. New topics include aberration corrected instruments, scanning confocal mode of operations, Bloch wave eigenvalue methods and parallel computing techniques. The ?rst edition - cluded a CD with computer programs, which is not included in this edition. - stead the associated programs will be available on an associated web site (currently people.ccmr.cornell.edu/~kirkland,but may move as time goes on). I wish to thank Mick Thomas for preparing the specimen used to record the image in Fig.5.26 and to thank Stephen P. Meisburger for suggesting an interesting biological specimen to use in Fig.7.24. Again, I apologize in advance for leaving out some undoubtedlyoutstanding r- erences. I also apologize for the as yet undiscovered errors that remain in the text. Earl J. Kirkland, December 2009 Preface to First Edition Image simulation has become a common tool in HREM (High Resolution El- tron Microscopy) in recent years. However, the literature on the subject is scattered among many different journals and conference proceedings that have occurred in the last two or three decades. It is dif?cult for beginners to get started in this ?eld.
arranged. Among them the following types are met: nanotubes, nanop- ticles, nanopowders, nano?bers, nanowires, nanocomposites, etc. * At the microscale - Microcomposites, such as metal matrix composites (MMCs), ceramic matrix composites (CMCs), alloys or superalloys, s- tered powders, ceramic materials, magnetorheological ?uids (MRFs), etc. * At the macroscale - Macrocomposites, such as functionally graded ma- rials (FGMs), thin layers or ?lms, thermal or oxidation or wear resistant coatings, multilayered structures, long ?ber composites, etc. At each level of analysis a response of the material to any physical excitation may be observed, measured and analyzed. In the sense of innovation of a material, the changes or new ideas can be introduced on the same scale of control (say, atomic or nano) in order to achieve fundamentally new behavior on the other scale of observation (say, micro or macro). For instance, by replacing some similar atoms in the metal crystal str- ture (e. g. Ti-Ti or Al-Al), by unlike atoms in the crystal (e. g. Ti-Al), wi- out the lattice symmetry of the original material changing, new improved properties and characteristics may be observed in intermetallics at the - cro or macroscale (higher speci?c strength, better creep resistance at elevated temperatures, better corrosion resistance, to mention only some properties observed at the macroscale). Similarly, changing material characteristics at the nanoscale, enables creation of completely new material functionality at micro or macroscales (e. g.
This volume originated in a happy event honoring Arthur Schawlow on his 65th birthday. As a research physicist, Schawlow has been a major infiuence on the present nature of physics and of high technology. He has also had a role, through the American Physical Society and other organizations, in shaping policy for the world of physicists. Important as these professional activities have been, the contributions to this volume were not prepared just for these reasons, but more for Art Schawlow the friend, colleague, and teacher. I am one who has had the privilege of knowing and collaborating with Art, probably over a longer period of time than others participating in this volume, and in a number of different enterprises; his friendship and stimulating scientific abilities are a very significant part of my own life. It is hence a pleasure to take part in this volume celebrating his contributions to science and to scientists. Schawlow's career has been geographically centered at the University of Toronto, Columbia University, the Bell Telephone Laboratories, and Stan ford University. But, as is illustrated by the papers of this volume, its effects and his personal infiuence have diffused widely. In his own work, Art Schawlow is noted for thoughtful imagination, keen physical intuition, and what might be thought an interest in gadgets - not just any gadgets, but beautiful and innovative mechanisms or new techniques in which he charac teristically recognizes important potentials.
The aim of this book is to provide both an introduction and a state-of-the-art report on research into magnetism and magnetic materials. Particular emphasis has been put on the contribution of synchrotron radiation in relevant experimental investigations. Graduate students and nonspecialists will benefit from the tutorial approach while specialists will find the latest results that round off the material presented in the lectures.
1989 was by any standards an extraordinary year: the year in which the Cold War ended. However, although much has changed, much remains unresolved or not changed at all. Even though the rationale for the huge military forces has been removed from the East-West relationship, these forces still retain a tremendous potential to do harm. Moreover, threats to peace may grow along North-South and South-South axes. An example of such a threat is the rapid growth in size and sophistication of military arsenals in the South. The contributions to this volume make it clear that the problems of East and West, North and South are inter- twined. Security can be gained only through cooperation. The contributors, who come from widely differing geographical, cultural and political backgrounds, all share the Pugwash tradition of scientific objectivity.
Since the previous Symposium, several exciting new developments and advances have occurred in the field of frequency standards and metrology. These include the first results on the long-tenn stability of a millisecond Pulsar, for which data 14 integrated over several years now show a stability of around 10- . Improvements in the understanding of various biases in Cesium beam standards promise accuracies in the low 14s for primary standards and in the low 13s for short commercial tubes, for which long tenn stabilities in low 14s have already been shown to be obtainable by accuracy improvement. Beams using optical pumping for state selection and for detection have been operated with excellent results, and more are being realized. Other new frequency standards which have appeared include a macroscopic rf trap with Mercury ions, which perfonns in the low 15s in one day, the sub millimeter metastable Magnesium beam, which has shown a short tenn stability 19 in the low 12s in one second and promises an accuracy of 10- , and the cold Hydrogen masers, which have such high stabilities that they cannot be measured with existing local oscillators. Prospects for future developments include laser manipulation of neutrals and spectroscopy of single ions at rest in a trap. Both these groups of techniques have great potential for unprecedented accuracy and short-and long-tenn stability, and new superior frequency standards are expected to be realizable in this way in the not too distant future.
This volume contains a series of six lecture courses presented by some of the leading exponents in the field of low-temperature physics. Special emphasis is given to theoretical and experimental advances in our understanding of 3He, heavy fermion systems and high-Tc superconductivity. The book provide an ideal basis for graduate courses in low-temperature physics. |
![]() ![]() You may like...
Counterterrorist Detection Techniques of…
Avi Cagan, Jimmie C. Oxley
Paperback
R3,742
Discovery Miles 37 420
Analytical Atomic Absorption…
Alfredo Sanz-Medel, Rosario Pereiro
Hardcover
R1,623
Discovery Miles 16 230
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,459
Discovery Miles 34 590
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, …
Hardcover
R4,271
Discovery Miles 42 710
Electron Paramagnetic Resonance - Volume…
Victor Chechik, Damien M. Murphy, …
Hardcover
R12,211
Discovery Miles 122 110
The Encyclopedia of Mass Spectrometry…
Michael L. Gross, Richard M. Caprioli
Hardcover
R11,362
Discovery Miles 113 620
|