Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
A detailed study of the science, engineering and applications of terahertz technology, based on room-temperature solid-state devices, which are seen as the key technology for wider applications in this frequency range. The relative merits of electronic and optical devices are discussed and new device principles identified. Issues of terahertz circuit design, implementation and measurement are complemented by chapters on current and future applications in communications, sensing and remote surveillance. Audience: The unique coverage of all aspects of terahertz technology will appeal to both new and established workers in the field, as well as providing a survey for the interested reader.
During recent years there has been increasing interest in the value of a number of chemical and physical-chemical analytical methods for the detection and characterization of microorganisms. Furthermore, such methods are currently used in studies on microbial metabolic processes, on the role of microorganisms in the turnover of inorganic and organic compounds, and on the impact on environmental changes by microbial activity. Moreover, the introduction of some of these methods not only shortens the analytical time period compared to *'traditional" techniques, but also improves the analytical quality. Mass spectrometry (MS) combined with chromatographic inlet systems, particularly gas chromatography (GC), belongs to those methods which during recent years have established their value for the above-mentioned purposes. The present volume starts with basic chapters on the principles for MS and common inlet systems, particulary Gc. It discusses applications of these techniques to a number of microbiological disciplines, e.g., ecologi cal and medical microbiology. Emphasis is laid on organic compound classes vii viii / PREFACE of special relevance to microbiology, e.g., volatiles, lipids, amino acids, peptides and carbohydrates. Some compound classes of a more general biochemical rather than specific microbiological importance, e.g., steroids and nucleotides, are dealt with briefly. The editors wish to thank all those who have contributed to this book. We hope it will stimulate further research in this futuristic field and will be of practical value.
This monograph deals with ion induced electron emission from crystalline solids bombarded by fast ions. During the past decade, electron spectroscopy combined with the ion channeling technique has revealed various "messages" about ion solid and electron solid interactions carried by the emitted elec trons. While the ion induced electrons produced by binary encounter pro cesses are of primary interest in this book, closely related topics such as the emission of ion induced Auger electrons from crystal targets are also reviewed, with emphasis on their interdisciplinary aspects, for example, their relation to photoelectron diffraction. In addition to these topics, the book describes the underlying physics and experimental techniques so that it should provide useful information for students and scientists working in ion beam based re search and development in various areas of atomic and solid state physics, materials science, surface science, etc. I am much indebted to the gererations of students who have passed through my laboratory, since they have stimulated me with elementary but essential questions in various phases of the studies. I am also grateful to T. Azuma, Y. Kido, K. Kimura, H. Naramoto, and S. Seki for critical reading of the manuscript. Tsukuba, August 2001 Hiroshi Kudo Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1o Terminology and Table of Symbols . . . . . . . . . . . . . . . . . . . . . . . 5 2. 2. 1 Notes on Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 2 Frequently Used Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3. Binary Encounter Electron Emission . . . . . . . . . . . . . . . . . . . . . . 7 3. 1 Ion Electron Elastic Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. 2 Recoil Cross Section of Orbital Electrons . . . . . . . . . . . . . . . . . .
This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.com
Measuring the hydrogen content in materials is important both for research and for various applications in material and surface sciences, such as hydrogen embrittlement of steel, controlled thermonuclear reaction first wall studies, and changed material properties caused by dissolved hydrogen. Hydrogen is the most difficult atomic species to analyze by traditional methods, but nuclear physics methods are particularly suited for this purpose. President of the Uzbek SSR Academy of Sciences P.K. Khabibullaev and Professor B.G. Skorodumov discuss in this book the characteristics of these methods, such as lower detection limits, selectivity in respect to different isotopes, accuracy, depth resolution and maximum detection depth. Examples of applications that are dealt with include the determination of material humidity, the dating of objects, the study of hydrogen diffusion including non-stationary processes, and the investigation of changes in material properties like superconductivity, plasticity and electrical properties due to contamination by hydrogen.
Energy-Filtering Transmission Electron Microscopy (EFTEM) presents a summary of the electron optics, the electron-specimen interactions, and the operation and contrast modes of this new field of analytical electron microscopy. The electron optics of filter lenses and the progress in the correction of aberrations are discussed in detail. An evaluation of our present knowledge of plasmon losses and inner-shell ionisations is of increasing interest for a quantitative application of EFTEM in materials and life sciences. This can be realized not only by filtering the elastically scattered electrons but mainly by imgaging and analyzing with inelastically scattered electrons at different energy losses up to 2000 eV. The strength of EFTEM is the combination of the modes EELS, ESI, ESD and REM.
The International Workshop on Holography in Medicine and Biology was held in MUnster, Federal Republic of Germany, on March 14th and 15th, 1979, at the Clinic of Otorhinolaryngology of the Westfalische Wilhelms-Universitat within the frame of the Symposium 79 of the Sonderforschungsbereich 88 "Teratology and Rehabilitation of Patients with Multiple Handicaps'' of the Deutsche Forschungsgemeinschaft. In fact, this workshop was not the first meeting dealing exclusively with biomedical applications of holography and related techniques. The very first symposium in this field was organized by Prof. P. Greguss and took place in New York in 1973. A second one was held in MUnster in 1976 with the objec tive to improve the communication among the at that time rather isolatedly working groups in this research domain. The great response to that meeting gave encouragement to the organization of another one in MUnster, this time on a more extended international base. Thus, this workshop attracted 85 scientists from 13 countries, i.e. Austria, Brazil, Czechoslovakia, Fed. Rep. of Germany, France, Great Britain, Hungary, Japan, Norway, Sweden, The Netherlands, USA, Yugoslavia."
76 2. Short Oligonucleotide Mass Analysis 76 2. 1. Method Outline 76 2. 2. Design of PCR Primers and Fragments for Analysis 78 2. 3. Typical PCR Reaction Conditions 79 3. Electrospray Ionisation Mass Spectrometry 79 Formation of Ions 3. 1. 79 3. 2. Tandem Mass Spectrometry 79 3. 3. Typical ESI-MS Settings for SOMA 80 4. Purification Procedures 80 4. 1. Phenol/Chloroform Extraction and Ethanol Precipitation 80 4. 2. In-line HPLC Purification 81 5. Genotyping Using SOMA 81 5. 1. APC Genotyping in Human Subjects 81 5. 2. APC Genotyping in Min Mice 85 5. Mutation Detection Using SOMA 86 6. 1. Analysis of p53 Mutations in Liver Cancer Patients 86 6. 1. 1. p53 Mutations in Liver Tumours 87 6. 1. 2. p53 Mutations in Plasma Samples 88 7. Advantages and Disadvantages of SOMA 89 8. Future Perspectives 90 9. Acknowledgements 91 10. References 91 CHAPTER 7 WV. Bienvenut, M. Muller, PM. Palagi, E. Gasteiger, M. Heller, E. Jung, M. Giron, R. Gras, S. Gay, PA. Binz, G J. Hughes, JC. Sanchez, RD. Appel, DF. Hochstrasser Proteomics and Mass Spectrometry: Some Aspects and Recent Developments 1. Introduction to Proteomics 93 2. Protein Biochemical and Chemical Processing Followed by Mass Spectrometric Analysis 94 2. 1. 2-DE Gel Protein Separation 95 Protein Identification Using Peptide Mass Fingerprinting and Robots 96 2. 2. 2. 2. 1. MALDI-MS Analysis 98 2. 2. 2. MS/MS Analysis 102 Improvement of the Identification by Chemical Modification of Peptides 106 2. 2. 3."
This monograph discusses collision-induced electron emission from nearly free-electron metals by ion or electron impact. This subject is, as is well known, of acute importance in understanding plasma-wall interactions in thermonuclear reactors. It is also the basis for one of the most exciting technological developments of the last few years - scanning electron miscroscopy. Several electron excitation mechanisms of electrons in the target are considered: excitation of single conduction and core electrons, excitation by plasmon decay and by Auger processes. Transport of inner excited electrons is simulated by the Boltzmann equation incorporating both elastic and inelastic collisions. The numerical calculation of scattering rates uses a dynamically screened Coulomb interaction. These results for the energy distributions of emerging electrons as well as the electron yield are compared with recent experimental measurements on electron emission from polycrystalline aluminum.
The Advanced Study Institute on "Path Integrals and Their Applications in Quantum, Statistical, and Solid State Physics" was held at the University of Antwerpen (R.U.C.A.), July 17-30, 1977. The Institute was sponsored by NATO. Co-sponsors were: A.C.E.C. (Belgium), Agfa-Gevaert (Belgium), l'Air Li~uide BeIge (Belgium), Be1gonucleaire (Belgium), Bell Telephone Mfg. Co. (Belgium), Boelwerf (Belgium), Generale BankmaatschappiJ (Belgium), I.B.M. (Belgium), Kredietbank (Belgium), National Science Foundation (U.S.A.), Siemens (Belgium). A total of 100 lecturers and partici- pants attended the Institute. The development of path (or functional) integrals in relation to problems of stochastic nature dates back to the early 20's. At that time, Wiener succeeded in obtaining the fundamental solution of the diffusion e~uation using Einstein's joint probability of finding a Brownian particle in a succession of space intervals during a corresponding succession of time intervals. Dirac in the early 30's sowed the seeds of the path integral formulation of ~uantum mecha- nics. However, the major and decisive step in this direction was taken with Feynman's works in ~uantum and statistical physics, and quantum electrodynamicso The applications now extend to areas such as continuous mechanics, and recently functional integration methods have been employed by Edwards for the study of polymerized matter.
Fabrication technologies for nanostructured devices have been
developed recently, and the electrical and optical properties of
such nanostructures are a subject of advanced research.
Reviews in Fluorescence 2009, the sixth volume of the book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of fluorescence and closely related disciplines. It summarizes the year's progress in fluorescence and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Reviews in Fluorescence offers an essential reference material for any lab working in the fluorescence field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of fluorescence will find it an invaluable resource. Reviews in Fluorescence 2009 topics include: Hot electron-Induced Electrogenerated Chemiluminescence. Time-correlated, single-photon counting methods in endothelial cell mechanobiology. Origin of Tryptophan Fluorescence. Protein Folding, Unfolding and Aggregation Processes revealed by Rapid Sampling of Time-Domain Fluorescence.
This completely revised and enlarged English edition of the original Russianbook deals with the identification and separation of charged particles in high energy physics experiments. Proportional drift and streamer chambers as well as ionization measurements with cloud, spark, and ionization chambers are discussed. Both scientists and advanced undergraduate students specializing in high energy or nuclear physics will find useful information for planning and performing ionization measurements and their analyses.
The book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. The book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to ensure conceptual learning before introducing specific techniques and "tricks of the trade". The book concentrates on a number of current research applications, and will present a detailed approach to each while emphasizing the applicability of techniques to other problems. The field of topics is wide, ranging from compressive (non-uniform) sampling in MRI, through automated retinal vessel analysis to 3-D ultrasound imaging and more. The book is amply illustrated with figures and applicable medical images. The reader will learn the techniques which experts in the field are currently employing and testing to solve particular research problems, and how they may be applied to other problems.
Initially a subfield of solid state physics, the study of mesoscopic systems has evolved over the years into a vast field of research in its own right. Keeping track its rapid progress, this book provides a broad survey of the latest developments in the field. The focus is on statistics and dynamics of mesoscopic systems with special emphasis on topics like quantum chaos, localization, noise and fluctuations, mesoscopic optics and quantum transport in nanostructures. Written with nonspecialists in mind, this book will also be useful to graduate students wishing to familiarize themselves with this field of research.
Photothermal science continues to be an area of rapid development and active investigation, as is demonstrated by this volume. The various contributions present fundamental research in materials science, physics, chemistry, biology, and medicine, as well as important applications of photothermal techniques in nondestructive evaluation, aeronomy and pollution control, and other areas. The topics treated include measurements of spectral properties of gases, the theory of thermally generated elastic waves, a method of monitoring local surface displacements, materials characterization and nondestructive evaluation of materials, studies of the dynamics of primary photophysical processes, fast energy exchange at surfaces and at interfaces (e.g. in medicine and photobiology), thermal EXAFS and XANES applied to metals and semiconductors, and imaging of magnetic materials using microwave sources.
Photonic band gap crystals offer unique ways to tailor light and the propagation of electromagnetic waves. In analogy to electrons in a crystal, EM waves propagating in a structure with a periodically-modulated dielectric constant are organized into photonic bands separated by gaps in which propagating states are forbidden. Proposed applications of such photonic band gap crystals, operating at frequencies from microwave to optical, include zero- threshold lasers, low-loss resonators and cavities, and efficient microwave antennas. Spontaneous emission is suppressed for photons in the photonic band gap, offering novel approaches to manipulating the EM field and creating high-efficiency light-emitting structures. Photonic Band Gap Materials identifies three most promising areas of research. The first is materials fabrication, involving the creation of high quality, low loss, periodic dielectric structures. The smallest photonic crystals yet fabricated have been made by machining Si wafers along (110), and some have lattice constants as small as 500 microns. The second area is in applications. Possible applications presented are microwave mirrors, directional antennas, resonators (especially in the 2 GHz region), filters, waveguides, Y splitters, and resonant microcavities. The third area covers fundamentally new physical phenomena in condensed matter physics and quantum optics. An excellent review of recent development, covering theoretical, experimental and applied aspects. Interesting and stimulating reading for active researchers, as well as a useful reference for non-specialists.
A key experiment in biomedical research is monitoring the expression of different proteins in order to detect changes that occur in biological systems under different experimental conditions. The method that is most widely used is the Western blot analysis. While Western blot is a workhorse in laboratories studying protein expression and has several advantages, it also has a number of significant limitations. In particular, the method is semi-quantitative with limited dynamic range. Western blot focuses on a single protein per sample with only a small number of representative samples analyzed in an experiment. New quantitative tools have been needed for some time to at least supplement, & possibly replace, the Western blot. Mass spectrometric methods have begun to compete with Western blot for routine quantitative analyses of proteins. One of these methods is based on the tandem mass spectrometry technique of selected reaction monitoring (SRM), which is also called multiple reaction monitoring (MRM). Selected reaction monitoring is actually an older tandem mass spectrometry technique, first described in the late 70s, that is widely utilized in the quantitative analysis of small molecules like drugs & metabolites. The use of selected reaction monitoring for the quantitative analysis of proteins has a number of advantages. Most importantly, it is fundamentally quantitative with a wide dynamic range. The output of the analysis is a numerical result that can range over several orders of magnitude. Other advantages include sufficient specificity & sensitivity to detect low abundance proteins in complex mixtures. Finally, selected reaction monitoring can be multiplexed to allow the quantitative analysis of relatively large numbers of proteins in a single sample in a single experiment. This Brief will explain both the theoretical & experimental details of the selected reaction monitoring experiment as it is applied to proteins.
Helium Ion Microscopy: Principles and Applications describes the theory and discusses the practical details of why scanning microscopes using beams of light ions - such as the Helium Ion Microscope (HIM) - are destined to become the imaging tools of choice for the 21st century. Topics covered include the principles, operation, and performance of the Gaseous Field Ion Source (GFIS), and a comparison of the optics of ion and electron beam microscopes including their operating conditions, resolution, and signal-to-noise performance. The physical principles of Ion-Induced Secondary Electron (iSE) generation by ions are discussed, and an extensive database of iSE yields for many elements and compounds as a function of incident ion species and its energy is included. Beam damage and charging are frequently outcomes of ion beam irradiation, and techniques to minimize such problems are presented. In addition to imaging, ions beams can be used for the controlled deposition, or removal, of selected materials with nanometer precision. The techniques and conditions required for nanofabrication are discussed and demonstrated. Finally, the problem of performing chemical microanalysis with ion beams is considered. Low energy ions cannot generate X-ray emissions, so alternative techniques such as Rutherford Backscatter Imaging (RBI) or Secondary Ion Mass Spectrometry (SIMS) are examined.
The properties of soft-matter thin films (e.g. liquid films, polymer coatings, Langmuir-Blodgett multilayers) nowadays play an important role in materials science. They are also very exciting with respect to fundamental questions: In thin films, liquids and polymers may be considered as trapped in a quasi-two-dimensional geometry. This confined geometry is expected to alter the properties and structures of these materials considerably. This volume is dedicated to the scattering of x-rays by soft-matter interfaces. X-ray scattering under grazing angles is the only tool to investigating these materials on atomic and mesoscopic length scales. A review of the field is presented with many examples.
There is considerable interest, both fundamental and technological, in the way atoms and molecules interact with solid surfaces. Thus the description of heterogeneous catalysis and other surface reactions requires a detailed understand ing of molecule-surface interactions. The primary aim of this volume is to provide fairly broad coverage of atoms and molecules in interaction with a variety of solid surfaces at a level suitable for graduate students and research workers in condensed matter physics, chemical physics, and materials science. The book is intended for experimental workers with interests in basic theory and concepts and had its origins in a Spring College held at the International Centre for Theoretical Physics, Miramare, Trieste. Valuable background reading can be found in the graduate-Ievel introduction to the physics of solid surfaces by ZangwilI(1) and in the earlier works by Garcia Moliner and F1ores(2) and Somorjai.(3) For specifically molecule-surface interac tions, additional background can be found in Rhodin and Ertl(4) and March.(S) V. Bortolani N. H. March M. P. Tosi References 1. A. Zangwill, Physics at Surfaces, Cambridge University Press, Cambridge (1988). 2. F. Garcia-Moliner and F. Flores, Introduction to the Theory of Solid Surfaces, Cambridge University Press, Cambridge (1979). 3. G. A. Somorjai, Chemistry in Two Dimensions: Surfaces, Cornell University Press, Ithaca, New York (1981). 4. T. N. Rhodin and G. Erd, The Nature of the Surface Chemical Bond, North-Holland, Amsterdam (1979). 5. N. H. March, Chemical Bonds outside Metal Surfaces, Plenum Press, New York (1986)."
This book gives a detailed overview on this new and exciting field at the boundary of physics and chemistry. Laser-induced ultrafast molecuar dynamics is presented for many textbook-like examples of model molecules and clusters. Experimental results on phenomena like wave packet propagation, ultrafast photodissociation and femtosecond structural redistribution are presented and described theoretically. |
You may like...
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,216
Discovery Miles 32 160
Mass Spectrometry - Future Perceptions…
Ganesh Shamrao Kamble
Hardcover
Mass Spectrometry in Biopharmaceutical…
Igor A. Kaltashov, Shunhai Wang, …
Hardcover
R2,763
Discovery Miles 27 630
Flavor of Dairy Products
Keith R. Cadwallader, Mary Anne Drake, …
Hardcover
R2,226
Discovery Miles 22 260
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,238
Discovery Miles 52 380
Analytical Atomic Absorption…
Alfredo Sanz-Medel, Rosario Pereiro
Hardcover
R1,501
Discovery Miles 15 010
NMR Spectroscopy in the Undergraduate…
David Soulsby, Laura J. Anna, …
Hardcover
R4,782
Discovery Miles 47 820
|