![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
The author integrates discussions of fractal geometry, surface modeling techniques, and applications to real world problems to provide a comprehensive, accessible overview of the field. His work will equip researchers with the basic tools for measurement and interpretation of data, stimulating more work on these problems and, perhaps, leading to an understanding of the reasons that Nature has adopted this geometry to shape much of our world.
This volume contains a sequence of reviews presented at the NATO Advanced Study Institute on 'Low Dimensional Structures in Semiconductors ... from Basic Physics to Applications.' This was part of the International School of Materials Science and 1990 at the Ettore Majorana Centre in Sicily. Technology held in July Only a few years ago, Low Dimensional Structures was an esoteric concept, but now it is apparent they are likely to playa major role in the next generation of electronic devices. The theme of the School acknowledged this rapidly developing maturity.' The contributions to the volume consider not only the essential physics, but take a wider view of the topic, starting from material growth and processing, then prog ressing right through to applications with some discussion of the likely use of low dimensional devices in systems. The papers are arranged into four sections, the first of which deals with basic con cepts of semiconductor and low dimensional systems. The second section is on growth and fabrication, reviewing MBE and MOVPE methods and discussing the achievements and limitations of techniques to reduce structures into the realms of one and zero dimensions. The third section covers the crucial issue of interfaces while the final section deals with devices and device physics."
This volume contains the invited papers and selected contributed papers presented at the biennial International Symposium on ELECTRON COLLISIONS WITH MOLECULES, CLUSTERS AND SURF ACES held at Royal Holloway, University of London from 29th to 30th July, 1993. This Symposium was a Satellite Meeting of the XVIII International Conference on the Physics of Electronic and Atomic Collisions (ICPEAC) and follows a 16 year tradition of Satellite Conferences in related areas of collisions held in association with previous ICPEAC's. In the past each of these electron -molecule symposia covered the broad field of electron-molecule scattering at rather low energies, but also included hot topics. This time as well as covering the whole field, well defined electron collisions with clusters and with particles in the complex potential of a surface were emphasized. Not many details are known about such collisions, although they become more and more important in surface characterisation, plasma-wall interactions, electron induced desorption and reorganisation of adsorbed particles. Recently, much work, theoretical and experimental, has been devoted to electron collisions with rather large carbon, silicon and halogen containing molecules. These problems are of relevance in plasma assisted thin film formation and etching of surfaces and can now be approached with advanced theoretical methods and experimental equipment.
This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the drive for more efficient heat engines has resulted in the development of silicon-based ceramics and composite ceramics. The discovery of high-temperature cupric oxide-based superconductors has created a plethora of interesting perovskite-Iike structured ceramics. Additionally, nanophase ceramics, ceramic thin films, and various forms of toughened ceramics have potential applications and, hence, their deformation has been investigated. Finally, new and exciting areas of research have attracted interest since 1983, including fatigue, nanoindentation techniques, and superplasticity.
This volume contains the papers presented at the NATO Advanced Research Workshop on "Magnetism and Structure in Systems of Reduced Dimension," held at l'Institut d'Etudes Scientifiques de Cargese - U.M.S. - C.N.R.S. - Universite de Corte Universite de Nice Sophia - Antipolis during June 15-19, 1992. The ordering of papers in the volume reflects the sequence of papers presented at the workshop. The aim was not to segregate the papers into rigidly defmed areas but to group the papers into small clusters, each cluster having a common theme. In this way the parallel, rather than serial, development of areas such as preparation of films, magnetic and structural characterization was highlighted. Indeed the success of the field depends on such parallel development and is assisted by workshops of this nature and the international collaborations which they foster. The organizers and participants of the NATO workshop express their thanks to Mme. Marie-France Hanseier and the staff at l'Institut d'Etudes Scientifiques de Cargese U.M.S. - C.N.R.S. - Universite de Corte - Universite de Nice Sophia - Antipolis for making the workshop and local arrangements a memorable success. Warm thanks are also expressed to Varadachari Sadagopan and Pascal Stefanou for their encouragement and help in making the workshop a reality. We are also grateful to Kristl Hathaway, Larry Cooper and Gary Prinz for advice in developing the workshop program."
The aim of this NATO Advanced Study Institute was to bring together scientists and students working in the field of laser matter interactions in order to review and stimulate developmentoffundamental science with ultra-short pulse lasers. New techniques of pulse compression and colliding-pulse mode-locking have made possible the construction of lasers with pulse lengths in the femtosecond range. Such lasers are now in operation at several research laboratories in Europe and the United States. These laser facilities present a new and exciting research direction with both pure and applied science components. In this ASI the emphasis is on fundamental processes occurring in the interaction of short laser pulses with atoms, molecules, solids, and plasmas. In the case of laser-atom (molecule) interactions, high power lasers provide the first access to extreme high-intensity conditions above 10'8 Watts/em', a new frontier for nonlinear interaction of photons with atoms and molecules. New phenomena observed include multiphoton ionization processes, atomic collisions in the presence of a strong laser field, Coulomb explosion following rapid ionization of a molecule and the production of high harmonics of the laser source. Another important topic reviewed in this ASI is the lasercooling ofatoms.
The Nato Advanced Study Institute "Phase Transitions in Liquid Crystals" was held May 2-12, 1991, in Erice, Sicily. This was the 16th conference organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The subject of "Liquid Crystals" has made amazing progress since the last ISQE Course on this subject in 1985. The present Proceedings give a tutorial introduction to today's most important areas, as well as a review of current results by leading researchers. We have brought together some of the world's acknowledged experts in the field to summarize both the present state of their research and its background. Most of the lecturers attended all the lectures and devoted their spare hours to stimulating discussions. We would like to thank them all for their admirable contributions. The Institute also took advantage of a very active audience; most of the students were active researchers in the field and contributed with discussions and seminars. Some of these student seminars are also included in these Proceedings. We did not modify the original manuscripts in editing this book, but we did group them according to the following topics: 1) "Theoretical Foundations"; 2) "Thermotropic Liquid Crystals"; 3) "Ferroelectric Liquid Crystals"; 4) "Polymeric Liquid Crystals"; and 5) "Lyotropic Liquid Crystals".
Molecular similarity has always been an important conceptual tool of chemists, yet systematic approaches to molecular similarity problems have only recently been recognized as a major contributor to our understanding of molecular properties. Advanced approaches to molecular similarity analysis have their foundation in quantum similarity measures, and are important direct or indirect contributors to some of the predictive theoretical, computational, and also experimental methods of modern chemistry. This volume provides a survey of the foundations and the contemporary mathematical and computational methodologies of molecular similarity approaches, where special emphasis is given to applications of similarity studies to a range of practical and industrially significant fields, such as pharmaceutical drug design. The authors of individual chapters are leading experts in various sub-fields of molecular similarity analysis and the related fundamental theoretical chemistry topics, as well as the relevant computational and experimental methodologies. Whereas in each chapter the emphasis is placed on a different area, nevertheless, the overall coverage and the wide scope of the book provides the reader with a general yet sufficiently detailed description that may serve as a good starting point for new studies and applications of molecular similarity approaches. The editors of this volume are grateful to the authors for their contributions, and hope that the readers will find this book a useful and motivating source of information in the rapidly growing field of molecular similarity analysis.
This Advanced Study Institute on the topic of SOLID STATE MICROBATTERIES is the third and final institute on the general theme of a field of study now termed "SOLID STATE IONICS". The institute was held in Erice, Sicily, Italy, 3 - 15 July 1988. The objective was to assemble in one location individuals from industry and academia expert in the fields of microelectronics and solid state ionics to determine the feasibility of merging a solid state microbattery with microelectronic memory. Solid electrolytes are in principle amenable to vapor deposition, RF or DC sputtering, and other techniques used to fabricate microelectronic components. A solid state microbattery 1 1 mated on the same chip carrier as the chip can provide on board memory backup power. A solid state microbattery assembled from properly selected anode/solid electrolyte/cathode materials could have environmental endurance properties equal or superior to semiconductor memory chips. Lectures covering microelectronics, present state-of-art solid state batteries, new solid electrolyte cathode materials, theoretical and practical techniques for fabrication of new solid electrolytes, and analytical techniques for study of solid electrolytes were covered. Several areas where effort is required for further understanding of materials in pure form and their interactions with other materials at interfacial contact points were identified. Cathode materials for solid state batteries is one particular research area which requires attention. Another is a microscopic model of conduction in vitreous solid electrolytes to enhance the thermodynamic macroscopic Weak ~lectrolyte Iheory (WET).
Much of this book was written during a sabbatical visit by J. C. H. S. to the Max Planck Institute in Stuttgart during 1991. We are therefore grateful to Professors M. Ruhle and A. Seeger for acting as hosts during this time, and to the Alexander von Humbolt Foundation for the Senior Scientist Award which made this visit possible. The Ph. D. work of one of us (J. M. Z. ) has also provided much of the background for the book, together with our recent papers with various collaborators. Of these, perhaps the most important stimulus to our work on convergent-beam electron diffraction resulted from a visit to the National Science Foundation's Electron Microscopy Facility at Arizona State University by Professor R. H(lJier in 1988, and from a return visit to Trondheim by J. C. H. S. in 1990. We are therefore particularly grateful to Professor H(lJier and his students and co-workers for their encouragement and collaboration. At ASU, we owe a particular debt of gratitude to Professor M. O'Keeffe for his encouragement. The depth of his under standing of crystal structures and his role as passionate skeptic have frequently been invaluable. Professor John Cowley has also been an invaluable sounding board for ideas, and was responsible for much of the experimental and theoretical work on coherent nanodiffraction. The sections on this topic derive mainly from collaborations by J. C. H. S. with him in the seventies.
Small-angle scattering of X rays and neutrons is a widely used diffraction method for studying the structure of matter. This method of elastic scattering is used in various branches of science and technology, includ ing condensed matter physics, molecular biology and biophysics, polymer science, and metallurgy. Many small-angle scattering studies are of value for pure science and practical applications. It is well known that the most general and informative method for investigating the spatial structure of matter is based on wave-diffraction phenomena. In diffraction experiments a primary beam of radiation influences a studied object, and the scattering pattern is analyzed. In principle, this analysis allows one to obtain information on the structure of a substance with a spatial resolution determined by the wavelength of the radiation. Diffraction methods are used for studying matter on all scales, from elementary particles to macro-objects. The use of X rays, neutrons, and electron beams, with wavelengths of about 1 A, permits the study of the condensed state of matter, solids and liquids, down to atomic resolution. Determination of the atomic structure of crystals, i.e., the arrangement of atoms in a unit cell, is an important example of this line of investigation."
At first glance, the articles in this book may appear to have nothing in common. They cover such seemingly disparate subjects as the properties of small metallic clusters and the behavior of superfluid He3, nuclear physics and organic materials, copper oxides and mag netic resonance. Why have they been brought together, particUlarly in our time of narrow spe cialization? In fact, the properties and effects described in this book touch upon one and the same fundamental phenomenon: pair correlation. Introduced in the theory of superconductivity by J. Bardeen, L. Cooper, and J. Schrieffer (BCS), this effect plays a key role in various Fermi systems. The book consists of several sections. The first chapter is concerned with conven tional and high Tc superconductors. The second chapter describes two relatively young fami lies of superconductors: organics and fullerenes. Chapter III addresses the superfluidity of 3 He * The discovery of this phenomenon in 1971 was a big event in physics and last year was acknowledged by a Nobel prize. This book contains the text of the Nobel lecture. Chapters IV and V are devoted to correlations in finite Fermi systems such as small metallic clusters, C 60 anions, and atomic nuclei. The book thus covers a broad range of problems, illuminating the close ties between various areas of physics.
This thesis presents results from a combined atomic-resolution Z-contrast and annular bright-field imaging and electron energy loss spectroscopy in the Scanning Transmission Electron Microscopy, as well as first principles studies of the interfaces between crystalline Si3N4 and amorphous (i) CeO2-x as well as (ii) SiO2 intergranular film (IGF). These interfaces are of a great fundamental and technological interest because they play an important role in the microstructural evolution and mechanical properties of Si3N4 ceramics used in many high temperature and pressure applications. The main contribution of this work is its detailed description of the bonding characteristics of light atoms, in particular oxygen and nitrogen, at these interfaces, which has not been achieved before. The atomic-scale information on the arrangement of both light and heavy atoms is critical for realistic modeling of interface properties, such as interface strength and ion transport, and will facilitate increased control over the performance of ceramic and semiconductor materials for a wide-range of applications.
During the past decade the theoretical physics community has learned how to evaluate accurately polarizabilities and susceptibilities for many-electron systems such as atoms, solids, and liquids. The most accurate numerical technique employs a method often called the Time-Dependent Local Density Approximation, which is abbreviated TDLDA. The present volume is a review of recent research on the theory of po larizabilities and susceptibilities. Both authors have been doing these cal culations. However, this review surveys the entire field, summarizing the research of many contributors. The application of an external field, either ac or de, will induce a dipole moment which can be calculated and compared with experiment. For mod erately strong fields, both linear and nonlinear processes contribute to the moment. We cover topics such as polarizability, hyperpolarizability, pho toionization, phonons, and piezoelectricity. Density functional theory in the Local Density Approximation (LDA) has been shown to be a very accurate method for calculating ground state prop erties of electronic system. For static external fields, the induced moments are properties of the ground state. Then the calculation of the polarizability . is very accurate. For ac fields, the moment is not part of the ground state. However, the TDLDA methods are still very accurate."
"You, 0 Sun, are the eye of the world You are the soul of all embodied beings You are the source of all creatures You are the discipline of all engaged in work" - Translated from Mahabharata 3rd Century BC Today, energy is the lifeline and status symbol of "civilized" societies. All nations have therefore embarked upon Research and Development pro grams of varying magnitudes to explore and effectively utilize renewable sources of energy. Albeit a low-grade energy with large temporal and spatial variations, solar energy is abundant, cheap, clean, and renewable, and thus presents a very attractive alternative source. The direct conver sion of solar energy to electricity (photovoltaic effect) via devices called solar cells has already become an established frontier area of science and technology. Born out of necessity for remote area applications, the first commercially manufactured solar cells - single-crystal silicon and thin film CdS/Cu2S - were available well over 20 years ago. Indeed, all space vehicles today are powered by silicon solar cells. But large-scale terrestrial applications of solar cells still await major breakthroughs in terms of discovering new and radical concepts in solar cell device structures, utilizing relatively more abundant, cheap, and even exotic materials, and inventing simpler and less energy intensive fabrication processes. No doubt, this extraordinary challenge in R/D has led to a virtual explosion of activities in the field of photovoltaics in the last several years."
Many and ever more mobile users wish to enjoy a variety of multimedia services, in very diverse geographical environments. The growing number of communication options within and across wireless standards is accommodating the growing volume and heterogeneity in wireless wishes. On the other hand, advancement in radio technologies opening much more flexibility, a.o. through Software Defined Radios, opens up the possibility to realize mobile devices featuring multi-mode options at low cost and interesting form factors. It is crucial to manage the new degrees of freedom opened up in radios and standards in a smart way, such that the required service is offered at satisfactory quality as efficiently as possible. Efficiency in energy consumption is clearly primordial for battery powered mobile terminals specifically, and in the context of growing ecological concerns in a broader context. Moreover, efficient usage of the spectrum is a growing prerequisite for wireless systems, and coexistence of different standards puts overall throughput at risk. The management of flexibility risks bringing about intolerable complexity and hamper the desired agility. A systematic approach, consisting of anticipative preparing for smooth operation, allows mastering this challenge. Case studies show that already today, this approach enables smart operation of radios realizing impressive efficiency gains without hampering Quality-of-Service. In the future wireless communication scenes will be able to profit form the opening of the spectrum. Even smarter and cognitive behavior will become possible and essential.
This book offers a balanced mixture of practice-oriented information and theoretical background as well as numerous references, clear illustrations, and useful data tables. Problems and solutions are accessible via a special website. This new edition has been completely revised and extended; it now includes three new chapters on tandem mass spectrometry, interfaces for sampling at atmospheric pressure, and inorganic mass spectrometry.
The field of solid state ionics is multidisciplinary in nature. Chemists, physicists, electrochimists, and engineers all are involved in the research and development of materials, techniques, and theoretical approaches. This science is one of the great triumphs of the second part of the 20th century. For nearly a century, development of materials for solid-state ionic technology has been restricted. During the last two decades there have been remarkable advances: more materials were discovered, modem technologies were used for characterization and optimization of ionic conduction in solids, trial and error approaches were deserted for defined predictions. During the same period fundamental theories for ion conduction in solids appeared. The large explosion of solid-state ionic material science may be considered to be due to two other influences. The first aspect is related to economy and connected with energy production, storage, and utilization. There are basic problems in industrialized countries from the economical, environmental, political, and technological points of view. The possibility of storing a large amount of utilizable energy in a comparatively small volume would make a number of non-conventional intermittent energy sources of practical convenience and cost. The second aspect is related to huge increase in international relationships between researchers and exchanges of results make considerable progress between scientists; one find many institutes joined in common search programs such as the material science networks organized by EEC in the European countries.
This volume contains the lectures and seminars presented at the NATO Advanced Study Institute on IIAdvances in Laser Spectroscopyll the tenth course of the Europhysics School of Quantum Electronics, held under the supervision of the Quantum Electronics Division of the European Physical Society. The Institute was held at Centro "I Cappuccinill San Miniato, Tuscany, July 26, - August 7, 1981. The Europhysics School of Quantum Electronics was started in 1970 with the aim of providing instruction for young researchers and advanced students already engaged in the area of quantum elec- tronics or wishing to switch to this area from a different back- ground. From the onset, the School has been under the direction of Prof. F. T. Arecchi, then at the University of Pavia, now at the University of Florence, .and Dr. D. Roess of Siemens, Munich. In 1981, Prof. H. Walther, University of Munich and Max-Planck- Institut fUr Quantenoptik joined as director. Each year the Directors choose a subject of particular interest, alternating fundamental topics with technological ones, and ask colleagues specifically competent in a given area to take the scientific responsibility for that course.
are intended to fill the gap between a manufacturer's handbook, and review articles that highlight the latest scientific developments. A fourth volume will deal with techniques for specimen handling, beam artifacts, and depth profiling. It will provide a compilation of methods that have proven useful for specimen handling and treatment, and it will also address the common artifacts and problems associated with the bombardment of solid sur faces by photons, electrons, and ions. A description will be given of methods for depth profiling. Surface characterization measurements are being used increasingly in di verse areas of science and technology. We hope that this series will be useful in ensuring that these measurements can be made as efficiently and reliably as possible. Comments on the series are welcomed, as are suggestions for volumes on additional topics. C. J. Powell Gaithersburg, Maryland A. W. Czandema Golden, Colorado D. M. Hercules Pittsburgh, Pennsylvania T. E. Madey New Brunswick, New Jersey J. T. Yates, Jr."
This book contains papers presented at the International Conference on Organic Superconductivity which was held May 20-24, 1990, at the Stanford Sierra Conference Center, South Lake Tahoe, California. In the twenty years since the First Conference on Organic Superconductivity was held (Hawaii, 1969), there has been remarkable progress in the field. At present, development is accelerating with contributions from many groups in many countries worldwide. The discovery of high Tc superconductivity by G. Bednorz and K. Muller in 1986 and subsequent developments in the ceramic superconductors have had an enormous impact on the field of superconductivity as a whole. This discovery occurred in an area entirely different from that of conventional superconduc tivity, underscoring the importance of the search for and study of novel materials of all kinds. We believe that the organics, with their wide range of structural, chemical, and physical properties, belong in this category of novel materials. This book reflects the efforts of researchers from various disciplines: physicists, chemists, and materials scientists. It addresses the normal and superconducting properties of organic materials, as well as the search for new compounds and new syntheses. We are pleased to note that one of these papers reports on the discovery of a new organic superconductor with a record high Tc in this class. One chapter is devoted to a comparison of organic superconductors and the cuprates, another, to the prospects of discovering other novel conducting or superconducting compounds."
The first Nato Advanced Studies Institute entirely devoted to density functional theory was held in Portugal in September 1983. The proceedings of this School, publis hed in early 1985, is still used as a standard reference covering the basic development of the theory and applications in atomic, molecular, solid state and nuclear physics. Ho wever, astonishing progress has been achieved in the intervening years: The foundations of the theory have been extended to cover excited states and time dependent problems more fully, density functional theory of classical liquids and superconducting systems has been addressed and extensions to relativistic, that is, field theoretical systems, as well as a more thorough discussion of magnetic field problems have been presented. In addition, new functionals have been devised, for instance under the heading of ge neralised gradient expansions, and the number of applications in the traditional fields has steadily increased, in particular in chemistry. Applications in new fields, as for instance the structure of atomic clusters and the marriage of density functional theory with molecular dynamics and simulated annealing, have provided additional impetus to the field of density functional theory."
Covering both theory and applications, this important work provides a comprehensive introduction to the modern theory of X-ray and electronic spectra of free atoms. Romas Karazija discusses methods of angular momenta, irreducible tensorial operators, and coefficients of fractional parentage and their use in determining cross sections and probabilities of elementary processes. In addition, Karazija addresses the structure of electronic shells with inner vacancies and many-body effects. |
You may like...
The Encyclopedia of Mass Spectrometry…
Michael L. Gross, Richard M. Caprioli
Hardcover
R10,685
Discovery Miles 106 850
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,294
Discovery Miles 52 940
Counterterrorist Detection Techniques of…
Avi Cagan, Jimmie C. Oxley
Paperback
R3,523
Discovery Miles 35 230
Flavor of Dairy Products
Keith R. Cadwallader, Mary Anne Drake, …
Hardcover
R2,260
Discovery Miles 22 600
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,257
Discovery Miles 32 570
|