![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
This book covers novel research results for process and techniques of materials characterization for a wide range of materials. The authors provide a comprehensive overview of the aspects of structural and chemical characterization of these materials. The articles contained in this book covers state of the art and experimental techniques commonly used in modern materials characterization. The book includes theoretical models and numerous illustrations of structural and chemical characterization properties.
Quantum Chemistry of Solids delivers a comprehensive account of the
main features and possibilities of LCAO methods for the first
principles calculations of electronic structure of periodic
systems. The first part describes the basic theory underlying the
LCAO methods applied to periodic systems and the use of
Hartree-Fock(HF), Density Function theory(DFT) and hybrid
Hamiltonians. The translation and site symmetry consideration is
included to establish connection between k-space solid -state
physics and real-space quantum chemistry. The inclusion of electron
correlation effects for periodic systems is considered on the basis
of localized crystalline orbitals. The possibilities of LCAO
methods for chemical bonding analysis in periodic systems are
discussed.
This book presents a careful selection of the most important developments of the \phi^4 model, offering a judicious summary of this model with a view to future prospects and the challenges ahead. Over the past four decades, the \phi^4 model has been the basis for a broad array of developments in the physics and mathematics of nonlinear waves. From kinks to breathers, from continuum media to discrete lattices, from collisions of solitary waves to spectral properties, and from deterministic to stochastic models of \phi^4 (and \phi^6, \phi^8, \phi^12 variants more recently), this dynamical model has served as an excellent test bed for formulating and testing the ideas of nonlinear science and solitary waves.
Used primarily for characterizing polymers and biological systems, vibrational spectroscopy continues to uncover structural information pertinent to a growing number of applications. Vibrational Spectroscopy of Biological and Polymeric Materials compiles the latest developments in advanced infrared and Raman spectroscopic techniques that are applicable to both polymeric materials and biological compounds. It also presents instrumentation and experimental details that can be used by polymer chemists and biochemists in the design of their own experiments. The text starts by describing the application of static and dynamic FT-IR spectroscopies to liquid crystalline polyurethanes, including a clear exposition of the theory behind the experiments. It discusses the measurement of static and dynamic linear dichroism and stress or strain in both single and multiple fiber composite materials. The book explains the roles of vibrational spectroscopy and the Langmuir-Blodgett technique in the study and preparation of high-quality ultrathin materials. Chapters rich in both theoretical and experimental details describe two-dimensional correlation spectroscopy and vibrational circular dichroism. Biomedically-oriented chapters describe the advances in IR imaging of tissues made possible by focal-plane arrays; as well as the use of ligand-gated FT-IR difference spectroscopy in neuropharmacology, particularly in identifying ligands and modes of action for the large number of membrane receptors recently identified in the human genome. The final chapter discusses the application of time-resolved FT-IR spectroscopy to biological materials, providing a detailed guide to the use of commercial step-scan instrumentation for examining sub-millisecond mechanistic details of photobiological processes. Written by eminent experts in these fields, Vibrational Spectroscopy of Biological and Polymeric Materials is an ideal and practical reference for the broad spectrum of researchers interested in the analysis and integration of biological and polymeric materials.
Annual Reports on NMR Spectroscopy, Volume 96, provides an in-depth accounting of progress in nuclear magnetic resonance (NMR) spectroscopy and its many applications, including all branches of science in which precise structural determination is required, and in which the nature of interactions and reactions in solution is being studied. This book has established itself as a premier resource for both specialists and non-specialists, with this new release focusing on Recent Advances in Absolute Shielding Scales for NMR Spectroscopy, Applications of Hyperpolarus Long-Lived States in Drug Screening, and Characterization of Mixed Network Phosphate Classes by 1D and 2D NMR Techniques, amongst other topics.
This book discusses the scientific mechanism of copper electrodeposition and it's wide range of applications. The book will cover everything from the basic fundamentals to practical applications. In addition, the book will also cover important topics such as: * ULSI wiring material based upon copper nanowiring * Printed circuit boards * Stacked semiconductors * Through Silicon Via * Smooth copper foil for Lithium-Ion battery electrodes. This book is ideal for nanotechnologists, industry professionals, and practitioners.
Developments in optical spectroscopy have taken new directions in recent decades, with the focus shifting from understanding small gas phase molecules towards applications in materials and biological systems. This is due to significant interest in these topics, which has been facilitated by significant technological developments.Absorption, luminescence and excited state energy transfer properties have become of crucial importance on a large scale in materials related to light-harvesting in organic and inorganic third generation solar cells, for solar water splitting, and in light emitting diodes, TV screens and many other applications. In addition, Foerster resonance energy transfer can be used as a ruler for the characterisation of the structure and dynamics of DNA, proteins and other biomolecules via labelling with fluorescing markers.This advanced textbook covers a range of these applications as well as the basics of absorption, emission and energy transfer of molecular systems in the condensed phase, in addition to the corresponding behaviour of metal nanoparticles and semiconductor quantum dots. Technical experimental requirements, aspects to avoid interfering perturbations and methods of quantitative data analysis make this book accessible and ideal for students and researchers in physical chemistry, biophysics and nanomaterials.
A Century of Separation Science presents an historical, as well as technical, perspective of the critical developments in separation science since 1900, covering recent advances in chromatography, electrophoresis, field-flow fractionation, contercurrent chromatography, adn supercritical fluid chromatography for high-speed and high-throughput analysis. The author also discusses the theory of gradient elution and solvent selection for optimal separation in liquid chromatography.
This work covers principles of Raman theory, analysis, instrumentation, and measurement, specifying up-to-the-minute benefits of Raman spectroscopy in a variety of industrial and academic fields, and how to cultivate growth in new disciplines. It contains case studies that illustrate current techniques in data extraction and analysis, as well as over 500 drawings and photographs that clarify and reinforce critical text material. The authors discuss Raman spectra of gases; Raman spectroscopy applied to crystals, applications to gemology, in vivo Raman spectroscopy, applications in forensic science, and collectivity of vibrational modes, among many other topics.
The high time-resolution radio sky represents unexplored astronomical territory. This thesis presents a study of the transient radio sky, focussing on millisecond scales. As such, the work is concerned primarily with neutron stars. In particular this research concentrates on a recently identified group of neutron stars, known as RRATs, which exhibit radio bursts every few minutes to every few hours. After analysing neutron star birthrates, a re-analysis of the Parkes Multibeam Pulsar Survey is described which has resulted in the discovery of 19 new transient radio sources. Of these, 12 have been seen to repeat and a follow-up campaign of observations has been undertaken. These studies have greatly increased our knowledge of the rotational properties of RRATs and enable us to conclude that they are pulsars with extreme nulling and/or pulse-to-pulse modulation. Although the evolution of neutron stars post-supernova is not yet understood, it seems that RRATs fit into the emerging picture in which pulsar magnetospheres switch between stable configurations.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
A unique look at some of the hottest topics in photophysics and photochemistry today The study of molecules in excited states has exploded over the past decade, providing new insights into conformational changes in organic molecules and opening up research opportunities for scientists and professionals in chemistry, physics, biology, medicine, and materials engineering. Using conformational analysis as a unifying concept, this important new work provides readers with a cohesive and cutting–edge overview of this fascinating and challenging field. From conformational changes accompanying photoinduced electron transfer to elementary photophysical and photochemical processes in living systems, the most representative and challenging topics are carefully gleaned from the vast literature, highlighting major conceptual problems along with the relevant experimental techniques. Authoritative, detailed contributions from both experimentalists and theoreticians include coverage of:
NMR spectroscopy has undergone a revolution in recent years with the advent of several new methods overcoming the problems of sensitivity and resolution. Recent developments in biotechnology have made it easier and economical to introduce 13C, 15N and 2H into proteins and nucleic acids. At the same time, there has been an explosion in the number of NMR experiments that utilize such isotope labeled samples. Thus, a combination of isotopic labeling and multidimensional, multinuclear NMR has opened up new avenues for structural studies of proteins, nucleic acids and their complexes. This book will focus on recent developments in isotope labeling methods for structural studies of small molecules, peptides, proteins and nucleic acids. The aim of the book is to serve as a compendium of isotope labeling for the biomolecular NMR community providing comprehensive coverage of the existing methods and latest developments along with protocols and practical hints on the various experimental aspects. The book will cover a wide range of topics in isotope labeling under one title including emerging areas of metabolonomics and solid state NMR.
Infrared Vibration—Rotation Spectroscopy: From Free Radicals to the Infrared Sky contains new experimental and theoretical methods on the high resolution infrared spectroscopy of small molecules. The book is divided into three parts. Features covered in the first part include:
THE PRINCIPLES, APPLICATIONS, AND TRENDS OF A KEY TOOL IN FOOD SCIENCE Maximizing food potential has become one of the priorities of the food industry and near-infrared spectroscopy (NIRS) is fast becoming a key "ingredient" in achieving that goal. Taking its place among other proven spectroscopic tools, near-infrared spectroscopy facilitates, for example, quality measurements made early in the production when fresh products are still edible, helping to determine whether the product goes to fresh market or to processing and thereby minimizing waste. Near-Infrared Spectroscopy in Food Science and Technology is one of the few available resources that applies this valuable technique specifically to the food science and technology industries. Written by authors with extensive expertise in NIRS and food science, this comprehensive resource provides an introduction to and overview of the technical aspects of NIRS, including: Basic principles of near-infrared spectroscopy Characteristics of the NIR spectra Instrumentation Sampling techniques Chemometrics Stressing the practical application of near-infrared technology, the book details the method's use in four key areas of food science and technology: agricultural and marine products, foodstuffs and processed foods, engineering and process monitoring, and food safety and disease diagnosis. Nearly encyclopedic in its coverage, Near-Infrared Spectroscopy in Food Science and Technology will prove a valuable guide for food science professionals as well as scientists and engineers in a wide range of related fields.
EPR spectroscopy is a versatile, nondestructive technique widely used in chemistry, biology, and physics. It detects molecules and materials with unpaired electrons making it a very selective technique that produces a wealth of information on such systems. Its high sensitivity makes it suitable in analyzing very small samples, single crystals, or reaction intermediates like radicals. This textbook takes a practical approach that introduces the basic concepts of EPR to suffi cient detail to allow the reader to gain a basic knowledge of EPR and understand how experiments are carried out and how spectra are analyzed and interpreted. Many illustrative examples are included drawn from solid-state physics and bioinorganic chemistry. It is suitable as a short introduction for advanced undergraduate and beginning graduate students taking their fi rst steps into EPR research.
"Solid-State Theory - An Introduction" is a textbook for graduate students of physics and material sciences. Whilst covering the traditional topics of older textbooks, it also takes up new developments in theoretical concepts and materials that are connected with such breakthroughs as the quantum-Hall effects, the high-Tc superconductors, and the low-dimensional systems realized in solids. Thus besides providing the fundamental concepts to describe the physics of the electrons and ions comprising the solid, including their interactions, the book casts a bridge to the experimental facts and gives the reader an excellent insight into current research fields. A compilation of problems makes the book especially valuable to both students and teachers.
This volume is intended to show beginners in modern Fourier Transform-Infrared analysis which technique of infrared analysis should be selected and how to use it to obtain certain information from the most common samples brought into research and analytical laboratories in production industries.
In this important book, the author summarizes and generalizes the results of 25 years of work in this exciting field, which has been developing extensively within the last few decades. The reader will find discussions of many crystals that were investigated in the microwave region, including low-dimensional and ferroelectric semiconductors, protonic conductors, quasi-one-dimensional H-bonded. and other order-disorder ferroelectrics. This volume is an essential reference for all scientists and graduate students whose interests are connected to the physics of ferroelectrics and related materials; the physics of structural phase transitions; and superionic conductors. It will also be of value to those interested in developing or exploiting microwave measurement techniques.
Interest in the Turin Shroud continues to the present day even
though it was finally carbon dated in 1988 and shown not to be of
an age consistent with Christ's burial. Scientifically, the age of
the shroud cloth is of little consequence, but to the general
public, it is of considerable significance.
Prompt gamma activation analysis (PGAA) is a unique, non-destructive nuclear analytical method with multi-element capabilities. It is most effective if intense neutron beams (especially cold beams) of nuclear reactors are used to induce the prompt gamma radiation. Based largely on the authors' pioneering research in cold neutron PGAA, the handbook describes the methodology in self-contained manner and reviews recent applications. The library of prompt gamma ray data and spectra for all natural elements, also provided on a CD-ROM supplement, is a unique aid to the practitioner. The level is understandable by a broad audience, which facilitates teaching and training. The Handbook of Prompt Gamma Activation Analysis is a comprehensive handbook written for those practising the method, wanting to implement it at a reactor facility, or just looking for a powerful non-destructive method of element analysis. The book is also useful for nuclear physics, chemistry and engineering scientists, scholars and graduate students interested in neutron-induced gamma ray spectroscopy and nuclear analytical methods.
Here, the authors introduce readers to solving molecular structure elucidation problems using the expert system ACD/Structure Elucidator. They explain in detail the concepts of the Computer-Assisted Structure Elucidation (CASE) approach and point out the crucial role of understanding the axiomatic nature of the data used to deduce the structure. Aspects covered include the main blocks of the expert system and essential features of the mathematical algorithms used. Graduate and PhD students as well as practicing chemists are provided with a detailed explanation of the various practical approaches depending on available spectral data peculiarities and the complexity of the unknown structure. This is supported by a large number of real-world completed examples, most of which are related to the structure elucidation of natural product molecules containing unusual skeletons. Dedicated software and further supplementary material are available at www.acdlabs.com/TeachingSE. |
You may like...
Evolutionary Constrained Optimization
Rituparna Datta, Kalyanmoy Deb
Hardcover
Europe and Japan Cooperation in the…
Shin Matsuzawa, Anne Weyembergh, …
Paperback
R1,242
Discovery Miles 12 420
Antiquities of Mexico - Comprising…
Edward King Viscount Kingsborough
Hardcover
R1,047
Discovery Miles 10 470
Operator-Related Function Theory and…
Karlheinz Groechenig, Yurii Lyubarskii, …
Hardcover
R2,658
Discovery Miles 26 580
Nonlinear Assignment Problems…
Panos M. Pardalos, L.S. Pitsoulis
Hardcover
R4,049
Discovery Miles 40 490
Optimization in Medicine
Carlos J. S. Alves, Panos M. Pardalos, …
Hardcover
R2,658
Discovery Miles 26 580
|