![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
Organic Structure Determination Using 2-D NMR Spectroscopy: A Problem-Based Approach, Second Edition, is a primary text for a course in two-dimensional (2-D) nuclear magnetic resonance (NMR) techniques, with the goal to learn to identify organic molecular structure. It presents strategies for assigning resonances to known structures and for deducing structures of unknown organic molecules based on their NMR spectra. The book begins with a discussion of the NMR technique, while subsequent chapters cover instrumental considerations; data collection, processing, and plotting; chemical shifts; symmetry and topicity; through-bond effects; and through-space effects. The book also covers molecular dynamics; strategies for assigning resonances to atoms within a molecule; strategies for elucidating unknown molecular structures; simple and complex assignment problems; and simple and complex unknown problems. Each chapter includes problems that will enable readers to test their understanding of the material discussed. The book contains 30 known and 30 unknown structure determination problems. It also features a supporting website from which instructors can download the structures of the unknowns in selected chapters, digital versions of all figures, and raw data sets for processing. This book will stand as a single source to which instructors and students can go to obtain a comprehensive compendium of NMR problems of varying difficulty.
Electron paramagnetic resonance (EPR) applications remain highly significant in modern analytical science and this volume compiles critical coverage of developments in the recent literature. The topics covered in this volume describe contrasting types of EPR application, including rapid scan EPR, using the EPR toolkit to investigate the structural dynamics of membrane proteins and pulse dipolar EPR spectroscopy for investigating biomolecular binding events. An additional chapter reviewing the PARACAT collaboration from the EU has also been included. Providing a snapshot of the area by a handpicked group of researchers at the cutting-edge of the field, this book is a useful addition to any library supporting this research.
Surface-Enhanced Raman Scattering (SERS) was discovered in the
1970s and has since grown enormously in breadth, depth, and
understanding. One of the major characteristics of SERS is its
interdisciplinary nature: it lies at the boundary between physics,
chemistry, colloid science, plasmonics, nanotechnology, and
biology. By their very nature, it is impossible to find a textbook
that will summarize the principles needed for SERS of these rather
dissimilar and disconnected topics. Although a basic understanding
of these topics is necessary for research projects in SERS with all
its many aspects and applications, they are seldom touched upon as
a coherent unit during most undergraduate studies in physics or
chemistry. This book intends to fill this existing gap in the
literature. It provides an overview of the underlying principles of
SERS, from the fundamental understanding of the effect to its
potential applications. It is aimed primarily at newcomers to the
field, graduate student, researcher or scientist, attracted by the
many applications of SERS and plasmonics or its basic science. The
emphasis is on concepts and background material for SERS, such as
Raman spectroscopy, the physics of plasmons, or colloid science,
all of them introduced within the context of SERS, and from where
the more specialised literature can be followed.
For almost a decade, quantitative NMR spectroscopy (qNMR) has been
established as valuable tool in drug analysis. In all disciplines,
i. e. drug identification, impurity profiling and assay, qNMR can
be utilized.
A classical metastable state possesses a local free energy minimum
at infinite sizes, but not a global one. This concept is phase size
independent. We have studied a number of experimental results and
proposed a new concept that there exists a wide range of metastable
states in polymers on different length scales where their
metastability is critically determined by the phase size and
dimensionality. Metastable states are also observed in phase
transformations that are kinetically impeded on the pathway to
thermodynamic equilibrium. This was illustrated in structural and
morphological investigations of crystallization and mesophase
transitions, liquid-liquid phase separation, vitrification and gel
formation, as well as combinations of these transformation
processes. The phase behaviours in polymers are thus dominated by
interlinks of metastable states on different length scales. This
concept successfully explains many experimental observations and
provides a new way to connect different aspects of polymer physics.
UV-Visible Spectrophotometry of Water and Wastewater is the first
book dedicated to the use of UV spectrophotometry for water and
wastewater quality monitoring. Using practical examples the reader
is shown how this technique can be a source of new methods of
characterization and measurement. Easy and fast to run, this simple
and robust analytical technique must be considered as one of the
best ways to obtain a quantitative estimation of specific or
aggregate parameters (eg. Nitrate, TOC), and simultaneously
qualitative information on the global composition of water and its
variation.
This book introduces readers to the latest advances in G protein-coupled receptor (GPCR) biology. It reviews our current understanding of the structural basis of ligand binding and allosteric mechanisms, following a decade of technological breakthroughs. Several examples of structure-based drug discovery are presented, together with the future challenges involved in designing better drugs that target GPCRs. In turn, the book illustrates the important concept of GPCR biased signaling in physiological contexts, and presents fluorescent- and light-based methodologies frequently used to measure GPCR signaling or to trace their dynamics in cells upon ligand activation. Taken together, the chapters provide an essential overview and toolkit for new scientific investigators who plan to develop GPCR projects. All chapters were written by experts in their respective fields, and share valuable insights and powerful methodologies for the GPCR field.
This book offers a pragmatic guide to navigating through the complex maze of EPR/ESR spectroscopy fundamentals, techniques, and applications. Written for the scientist who is new to EPR spectroscopy, the editors have prepared a volume that de-mystifies the basic fundamentals without weighting readers down with detailed physics and mathematics, and then presents clear approaches in specific application areas. The first part presents basic fundamentals and advantages of electron paramagnetic resonance spectrscopy. The second part explores severalapplication areas including chemistry, biology, medicine, materials and geology. A frequently-asked-questions sections focuses on practicalquestions, such as the size of sample, etc. It's an ideal, hands-on reference for chemists and researchers in the pharmaceutical and materials (semiconductor) industries who are looking for a basic introduction to EPR spectroscopy.
This book reports new findings in the fields of nonlinear optics, quantum optics and optical microscopy. It presents the first experimental device able to transform an input Gaussian beam into a non-diffracting Bessel-like beam. The modulation mechanism, i.e. electro-optic effect, allows the device to be fast, miniaturizable and integrable into solid state arrays. Also presented is an extensive study of the superposition of Bessel beams and their propagation in turbid media, with the aim of realizing field that is both localized and non-diffracting. These findings have been implemented in a light-sheet microscope to improve the optical sectioning. From a more theoretical point of view this work also tackles the problem of whether and how a single particle is able to entangle two distant systems. The results obtained introduce fundamental limitations on the use of linear optics for quantum technology. Other chapters are dedicated to a number of experiments carried out on disordered ferroelectrics including negative intrinsic mass dynamics, ferroelectric supercrystals, rogue wave dynamics driven by enhanced disorder and first evidence of spatial optical turbulence.
This book studies the dynamics of fundamental collective excitations in quantum materials, focusing on the use of state-of-the-art ultrafast broadband optical spectroscopy. Collective behaviour in solids lies at the origin of several cooperative phenomena that can lead to profound transformations, instabilities and phase transitions. Revealing the dynamics of collective excitations is a topic of pivotal importance in contemporary condensed matter physics, as it provides information on the strength and spatial distribution of interactions and correlation. The experimental framework explored in this book relies on setting a material out-of-equilibrium by an ultrashort laser pulse and monitoring the photo-induced changes in its optical properties over a broad spectral region in the visible or deep-ultraviolet. Collective excitations (e.g. plasmons, excitons, phonons...) emerge either in the frequency domain as spectral features across the probed range, or in the time domain as coherent modes triggered by the pump pulse. Mapping the temporal evolution of these collective excitations provides access to the hierarchy of low-energy phenomena occurring in the solid during its path towards thermodynamic equilibrium. This methodology is used to investigate a number of strongly interacting and correlated materials with an increasing degree of internal complexity beyond conventional band theory.
Micro-Raman Spectroscopy introduces readers to the theory and application of Raman microscopy. Raman microscopy is used to study the chemical signature of samples with little preperation in a non-destructive manner. An easy to use technique with ever increasing technological advances, Micro-Raman has significant application for researchers in the fields of materials science, medicine, pharmaceuticals, and chemistry.
This book originated out of a desire to combine topics on vibrational absorption, Raman scattering, vibrational circular dichroism (VCD) and Raman optical activity (VROA) into one source. The theoretical details of these processes are presented in ten different chapters. Using dispersive and Fourier transform techniques, the instrumentation involved in these spectral measurements are given in three chapters. Major emphasis is placed on the newer techniques, i.e. VCD and VROA, with the conventional vibrational absorption and vibrational Raman scattering methods incorporated as natural parts of the newer methods. Features of this book: Comprehensive coverage of vibrational circular dichroism and vibrational Raman optical activity. Coverage of theoretical and instrumental details. A comprehensive survey of VCD and VROA applications is included, so that the reader can get an overview of theory, instrumentation and applications in one source. The topics covered are of an advanced level, which makes this
book invaluable for graduate students and practising scientists in
vibrational spectroscopy.
Annual Reports on NMR Spectroscopy, Volume 94, provides a thorough accounting of progress in nuclear magnetic resonance (NMR) spectroscopy and its applications in all branches of science in which precise structural determination is required, and in which the nature of interactions and reactions in solution is being studied. Updates in this new release include sections on 31PNMR Studies of Lateral Diffusion, Progress in the Accurate Determination of 1H-1H Distances by NMR Procedures, Recent Solid State NMR Studies of Hydrated Lipid Membranes, and Recent Advances in 17O NMR Studies. This book has established itself as a premier means for both specialists and non-specialists who are looking to become familiar with new techniques and applications pertaining to NMR spectroscopy.
Bonding Theory for Metals and Alloys exhorts the potential
existence of covalent bonding in metals and alloys. Through the
recognition of the covalent bond in coexistence with the 'free'
electron band, the book describes and demonstrates how the many
experimental observations on metals and alloys can all be
reconciled. Subsequently, it shows how the individual view of
metals and alloys by physicists, chemists and metallurgists can be
unified. The physical phenomena of metals and alloys covered in
this book are: Miscibility Gap between two liquid metals; Phase
Equilibrium Diagrams; Phenomenon of Melting. Superconductivity;
Nitinol; A Metal-Alloy with Memory; Mechanical Properties; Liquid
Metal Embrittlement; Superplasticity; Corrosion; The author
introduces a new theory based on 'Covalon' conduction, which forms
the basis for a new approach to the theory of superconductivity.
This new approach not only explains the many observations made on
the phenomenon of superconductivity but also makes predictions that
have been confirmed.
Frontiers and Advances in Molecular Spectroscopy once again brings together the most eminent scientists from around the world to describe their work at the cutting-edge of molecular spectroscopy. Much of what we know about atoms, molecules and the nature of matter has been obtained using spectroscopy over the last one hundred years or so. Going far beyond the topics discussed in Jaan Laane's earlier book on the subject, these chapters describe new methodologies and applications, instrumental developments and theory, which are taking spectroscopy into still new frontiers. The robust range of topics once again demonstrates the wide utility of spectroscopic techniques. New topics include ultrafast spectroscopy of the transition state, SERS/far-uv spectroscopy, femtosecond coherent anti-Stokes Raman spectroscopy, high-resolution laser induced fluorescence spectroscopy, Raman spectroscopy and biosensors, vibrational optical activity, ultrafast two-dimensional spectroscopy, biology with x-ray lasers, isomerization dynamics and hydrogen bonding, single molecule imaging, spectra of intermediates, matrix isolation spectroscopy and more.
UV-Visible Spectrophotometry of Water and Wastewater, Second Edition, represents an update to the first book dedicated to the use of UV spectrophotometry for water and wastewater quality monitoring. Using practical examples, the book illustrates how this technique can be a source of new methods of characterization and measurement. Easy and fast to run, this simple and robust analytical technique must be considered as one of the best ways to obtain a quantitative estimation of specific or aggregate parameters (e.g., Nitrate, TOC) and simultaneously qualitative information on the global composition of water and its variation. This second edition presents the current methods and applications for water quality monitoring based on UV spectra, including the most recent works and developments. After the introduction of the basics for UV spectrophotometry understanding, the applications of UV measurement are presented, both from the family of chemicals and water quality parameters and from the type of water. Writing from years of experience in the development and applications of UV systems and from scientific and technical works, the authors provide several useful examples showing the great interest of UV spectrophotometry for water quality monitoring. At the end of the book, the UV spectra library of the first edition is updated with dozens of new chemicals of interest.
Correlative Light and Electron Microscopy III, Volume 140, a new volume in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Topics discussed in this new release include Millisecond time-resolved CLEM, Super resolution LM und SEM of high-pressure frozen C. elegans, Preservation fluorescence, super res CLEM, APEX in Tissue, Corrsight mit IBIDI flowthrough chamber, Correlative Light Atomic Force Electronic Microscopy (CLAFEM), Atmospheric EM CLEM, and High-precision correlation, amongst other topics. Chapters in this ongoing series deal with different approaches for analyzing the same specimen using more than one imaging technique. The strengths and application area of each is presented, with this volume exploring the aspects of sample preparation of diverse biological systems for different CLEM approaches.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. |
You may like...
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,294
Discovery Miles 52 940
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, …
Hardcover
R4,020
Discovery Miles 40 200
Photoacoustic and Photothermal…
Surya N. Thakur, Virendra N. Rai, …
Paperback
R4,417
Discovery Miles 44 170
The Encyclopedia of Mass Spectrometry…
Michael L. Gross, Richard M. Caprioli
Hardcover
R10,685
Discovery Miles 106 850
|