![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Other branches of medicine > Medical imaging
A practical, highly useful guide to the principles of I.C.U. chest radiology, complete with case studies and radiographs on CD For critically ill patients in a hospital's I.C.U., a portable chest radiograph is the most helpful, and most commonly used, x-ray examination. Cardiopulmonary complications and the malposition of lines, tubes, and catheters are often initially detected on a portable chest film. It is essential for hospital personnel to know how to approach and read these films, and yet little attention has been paid to teaching the accurate evaluation of this crucial diagnostic tool. The first book in more than a decade to specifically address this topic, I.C.U. Chest Radiology is an authoritative and concise guide to interpreting portable chest film; identifying and correcting any abnormal positions in the various devices inserted into the vascular and respiratory systems; and diagnosing abnormalities of the cardiopulmonary system. Radiology expert Dr. Harold Moskowitz outlines his approach and philosophy toward x-ray interpretation of the I.C.U. patient one that can be used daily and in any I.C.U. setting. Divided into ten straightforward chapters, the book begins with a discussion of the physics necessary to obtain a proper film and moves on to the more clinical problems encountered each day in the I.C.U. such as airspace disease, barotrauma, pneumonia, congestive failure, and malalignment of tubes and lines. Throughout, Moskowitz points out specific findings that can often make a difference in a patient's management. Supporting these detailed chapters is a CD featuring real-life case studies and radiographic images that simulate common problems in the I.C.U. This is a unique way for readers to prepare to handle the all-too-common scenario: the 2:00 a.m. call from an I.C.U. nurse that a patient has "crashed" and needs attention. Using knowledge gleaned from the chapters, the reader is encouraged to study the radiogra
This book presents a thorough review of coronary angioscopy, ranging from instructions on its use to the latest advances. Starting with the structure and fundamental principles of angioscopy, it shows readers how to apply the image to comprehensive care of coronary-artery patients. Plentiful color photos and illustrations will enable readers to investigate and classify plaques and thrombi and to evaluate coronary stent- and drug-based therapies. The authors are leading researchers on angioscopy. This book offers the perfect guide not only for new clinicians but also for cardiologists who have already adopted this technique for medical examination and treatment. Angioscopy is a unique medical technique for visualizing the interior of blood vessels and helps physicians not only to diagnose the pathology but also to measure the effectiveness of Percutaneous coronary intervention (PCI) or antiarteriosclerotic drugs. Furthermore, the recently developed molecular angioscopy approach allows us to observe Low-density lipoprotein (LDL) oxide, collagen, and macrophages, and is rapidly growing in importance.
This book is a guide to the use of Monte Carlo techniques in radiation transport. This topic is of great interest for medical physicists. Praised as a "gold standard" for accurate radiotherapy dose calculations, Monte Carlo has stimulated a high level of research activity that has produced thousands of papers within the past few years. The book is designed primarily to address the needs of an academically inclined medical physicist who wishes to learn the technique, as well as experienced users of standard Monte Carlo codes who wish to gain insight into the underlying mathematics of Monte Carlo algorithms. The book focuses on the fundamentals-giving full attention to and explaining the very basic concepts. It also includes advanced topics and covers recent advances such as transport of charged particles in magnetic fields and the grid-based solvers of the Boltzmann equation.
Cell Imaging is rapidly evolving as new technologies and new imaging advances continue to be introduced. In the second edition of Cell Imaging Techniques: Methods and Protocols expands upon the previous editions with current techniques that includes confocal microscopy, transmission electron microscopy, atomic force microscopy, and laser microdissection. With new chapters covering colocalization analysis of fluorescent probes, correlative light and electron microscopy, environmental scanning electron microscopy, light sheet microscopy, intravital microscopy, high throughput microscopy, and stereological techniques. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls Authoritative and cutting-edge, Cell Imaging Techniques: Methods and Protocols, Second Edition is an easily accessible volume of protocols to be used with a variety of imaging-based equipment likely available in a core imaging facility.
Based on the author's lecture notes and research, this well-illustrated and comprehensive text is one of the first to provide an introduction to image registration with particular emphasis on numerical methods in medical imaging. Ideal for researchers in industry and academia, it is also a suitable study guide for graduate mathematicians, computer scientists, engineers, medical physicists, and radiologists. Image registration is utilised whenever information obtained from different viewpoints needs to be combined or compared and unwanted distortion needs to be eliminated. For example, CCTV images, ultrasound images, brain scan images, fingerprint and retinal scanning. Modersitzki's book provides a systematic introduction to the theoretical, practical, and numerical aspects of image registration, with special emphasis on medical applications. Various techniques are described, discussed and compared using numerous illustrations. The text starts with an introduction to the mathematical principles and the motivating example of the Human Neuroscanning Project whose aim is to build an atlas of the human brain through reconstructing essential information out of deformed images of sections of a prepared brain. The introduction is followed by coverage of parametric image registrations such as landmark based, principal axes based, and optimal affine linear registration. Basic distance measures like sum of squared differences, correlation, and mutual information are also discussed. The next section is devoted to state-of-the-art non-parametric image registrations where general variational based framework for image registration is presented and used to describe and compare well-known and new image registration techniques. Finally, efficient numerical schemes for the underlying partial differential equations are presented and discussed. This text treats the basic mathematical principles, including aspects from approximation theory, image processing, numerics, partial differential equations, and statistics, with a strong focus on numerical methods in image processing. Providing a systematic and general framework for image registration, the book not only presents state-of-the-art concepts but also summarises and classifies the numerous techniques to be found in the literature.
Oncological imaging has thoroughly changed in the past decade, especially due to the introduction of PET and 18FDG. In "Positron Emission Tomography," expert referring specialists and professional imagers seek to help bridge some of the knowledge gaps in several oncological domains. The book s goal is to aid in the improvement of communicative competences: to communicate scan findings so that the referring specialist receives proper advice from the imager, and that, alternatively, the referring one provides the imager with appropriate clinical details to allow for a proper interpretation, and that the referring specialist is aware of the possibilities and limitations of the requested technology. While it focuses on FDG PET, other radiopharmaceuticals are covered as well, where appropriate. Written for the highly respected "Methods in Molecular Biology " series, this volume provides the kind of detailed description and implementation advice that is crucial for getting optimal results. Authoritative and convenient, "Positron Emission Tomography" serves as an excellent reference for oncologists, surgeons, radiotherapists, radiologists, nuclear medicine physicians, and pathologists desiring a stronger synergy within their vital efforts."
Developments in teleradiology are progressing at great speed. As a consequence, there is a need for a broad overview of the field. This first-ever book on teleradiology is presented in such a way that it should make it accessible to anyone, independent of their knowledge of technology. The text is designed to be used by all professionals, including radiologists, surgeons, nurses and allied health professionals, and computer scientists. In a very short time, driven by technical developments, the field of teleradiology has become too extensive to be covered by only a small number of experts. Therefore, Teleradiology has been written with chapter contributions from a host of renowned international authorities in teleradiology (see the Contents and the Contributors). This ensures that the subject matter focusing on recent advances in teleradiology is truly up to date. Our guiding hope during this task was that as editors of multiple chapters we could still write with a single voice and keep the content coherent and simple. We hope that the clarity of this book makes up for any limitations in its comp- hensiveness.
Dr. William Herring's Learning Radiology: Recognizing the Basics, 5th Edition, remains the leading introductory radiology text for medical students and others who are required to read and interpret common radiologic images. Using an easy-to-follow pattern recognition approach, this clearly written, highly illustrated text teaches how to differentiate normal and abnormal images of all modalities. From the basics of patient safety, dose reduction, and radiation protection to the latest information on ultrasound, MRI, and CT, it provides a complete, up-to-date introduction to radiology needed by today's students. Uses a clear, conversational writing style-with a touch of humor-to explain what you need to know to effectively interpret medical images of all modalities. Teaches how to arrive at a diagnosis by following a pattern recognition approach, and logically overcome difficult diagnostic challenges with the aid of decision trees. Employs an easy-to-read, bullet-point format, including bolded key points and icons designating special content: Diagnostic Pitfalls, Really Important Points, Take-Home Points, and Weblinks. Features more than 850 high-quality illustrations, useful tables, case study questions, and teaching boxes throughout. Shares the extensive knowledge and experience of esteemed author Dr. William Herring, a skilled radiology teacher and the host of his own specialty website, www.learningradiology.com. Offers quick review and instruction for medical students, residents, and fellows, as well as those in related fields such as nurse practitioners and physician assistants. An eBook version is included with purchase. The eBook allows you to access all of the text, figures and references, with the ability to search, customize your content, make notes and highlights, and have content read aloud-as well as access bonus content, including new appendices covering the Discovery of X-rays, Diagnostic Radiology Signs, and Artificial Intelligence in Radiology; USMLE-style Q 30 videos; and more.
An in-depth introduction to radiotherapy physics emphasizing the clinical aspects of the field. This second edition gradually and sequentially develops each of its topics in clear and concise language. It includes important mathematical analyses, yet is written so that these sections can be skipped, if desired, without compromising understanding. The book consists of seven parts covering basic physics (Parts I-II), equipment for radiotherapy (Part III), radiation dosimetry (Parts IV-V), radiation treatment planning (Part VI), and radiation safety and shielding (Part VII). An invaluable text for radiation oncologists, radiation therapists, and clinical physicists.
This book represents the first comprehensive textbook devoted to the standard of care, current guidelines and innovations in the field of mesenteric vascular disease. The book reviews imaging modalities, diagnostic work up, physiologic tests, traditional open surgical techniques and novel endovascular approaches. Technical aspects of both open surgical and endovascular techniques are provided by experts in the field, with illustrations and photographs of key steps for each type of procedure. Results of epidemiologic studies and national databases are summarized, as well as large institutional experiences. An evidence-based approach is used for recommendations regarding best therapies. Diagnostic approaches including imaging and novel physiologic tests, including gastric tonometry and oxygen light spectroscopy are covered. Mesenteric Vascular Disease: Current Therapy will serve as a very useful resource for clinicians, surgeons, interventionalists, gastroenterologists and researchers dealing with and interested in mesenteric vascular diseases.
It is now widely recognised that biological psychiatry is rapidly
coming into its own. For over the last three decades dramatic
advances in this young discipline have been made, all of which
attest to the staying power of the experimental method. Those who
made this revolution in knowledge happen are a breed of
investigators availing themselves of the tools of molecular
biology, pharmacology, genetics, and perhaps, above all, the
technology of neuroimaging. The introduction of the
interdisciplinary method of approach to the study of
psychopathology had made it very clear that neuroimaging, as a set
of techniques, is unique in that it is gradually providing us with
evidence supporting Kraepelin's original view that mental illness
is closely associated with abnormal changes in the brain.
3D ultrasound shows a still image of a foetus, far more detailed than the 2D flat grey scale imaging. 4D ultrasound is more advanced, showing a moving image, allowing obstetricians to evaluate foetal well-being. It is also used by gynaecologists to examine uterine anomalies. This book is a practical guide to the use of 3D and 4D ultrasound in obstetrics and gynaecology. Divided into three sections, the text begins with an introduction to ultrasound, its working and application, its function, software, and volume calculation tools. Section Two covers clinical applications of volume ultrasound in obstetrics, explaining its use during the first trimester, for foetal abnormalities, for functional assessment of foetal brain development, and in labour. The final section discusses the application of ultrasound in gynaecology, covering uterine abnormalities, adnexal lesions, and in infertility. The book concludes with an appendix detailing different terms used by different brands. Key points Practical guide to use of 3D and 4D ultrasound in obstetrics and gynaecology Provides detailed explanation of ultrasound working, function and software Covers different uses of ultrasound for foetal monitoring, gynaecological disorders, and infertility Highly illustrated with detailed ultrasound images
Drug development today needs to balance agility, speed, and risk in defining probability of success for molecules, mechanisms, and therapeutic concepts. New techniques such as fMRI promise to be part of a sequence that could transform drug development. Although numerous review articles exist that discuss the use of imaging in drug development, no one source is available that combines the various techniques and includes a discussion of disease mapping. Imaging in CNS Drug Discovery and Development, Implications for Disease and Therapy will serve to distill the most salient developments in the use of imaging in drug development and disease mapping. It will launch evolving concepts that integrate new imaging technologies and paradigms with molecular medicine and molecular profiling ("monics") as well as consider the ethical issues that arise as a result of disease or state diagnosis and the use of imaging in the public eye.
This volume builds on the success of the first edition of Imaging Pelvic Floor Disorders and is aimed at those practitioners with an interest in the imaging, diagnosis and treatment of pelvic floor dysfunction. Concise textual information from acknowledged experts is complemented by high-quality diagrams and images to provide a thorough update of this rapidly evolving field. Introductory chapters fully elucidate the anatomical basis underlying disorders of the pelvic floor. State of the art imaging techniques and their application in pelvic floor dysfunction are then discussed in detail. Additions since the first edition include consideration of the effect of aging and new chapters on perineal ultrasound, functional MRI and MRI of the levator muscles. The closing sections of the book describe the modern clinical management of pelvic floor dysfunction, including prolapse, urinary and faecal incontinence and constipation, with specific emphasis on the integration of diagnostic and treatment algorithms. Written for: Practitioners and clinicians in the fields radiology, urology, proctology/colorectal surgery, gynecology, gastroenterology
Over the past decade, we have made great advances in the field of multiple sclerosis (MS) research, and this book focuses on those advances in MS pathogenesis and treatment. While some of these advances have been through new approaches and ideas that have emerged in the last decade such as the newly identified protective role that amyloid proteins may play in MS or the use of helminths to treat autoimmune diseases, others have evolved from previous theories and ideas that have only now gained momentum and a deeper understanding such as the role of HLA or gender in MS susceptibility. This book covers these emerging and evolving topics and highlights the substantial advancements made in elucidation of the factors regulating susceptibility or disease progression, identification of new ways to monitor or predict MS pathology, and development of new strategies for treating MS.
Reflecting the expanding field's need for reliable protocols, Fluorescence Spectroscopy and Microscopy: Methods and Protocols offers techniques from a worldwide team of experts on this versatile and vital subject. The topics covered fall into four broad categories: steady-state fluorescence spectroscopy, time-resolved fluorescence spectroscopy, fluorescent probe development, and the various sub-categories of fluorescence microscopy, such as fluorescence recovery after photobleaching (FRAP), live cell FRET imaging (FRETim), fluorescence lifetime imaging (FLIM), fluorescence fluctuation spectroscopy (FFS), and single-molecule fluorescence spectroscopy (smFS). Written as a part of the popular Methods in Molecular Biology series, chapters include the kind of unambiguous detail and key implementation advice that proves essential for successful results. Comprehensive and practical, Fluorescence Spectroscopy and Microscopy: Methods and Protocols aims to guide both 'novice' and established scientists toward furthering their research with these invaluable techniques.
Based on the most novel approaches and cutting-edge clinical and scientific information regarding radionuclide imaging and therapies for neuroendocrine tumors, this clinical guidebook represents a unique collaborative effort between endocrinologists, nuclear physicians, oncologists, surgeons, physicists, radio-pharmacists and geneticists. It begins with the embryology, classification and molecular genetics of gastroenteropancreatic neuroendocrine tumors and carcinoids, chromaffin cell tumors, and MEN1- and MEN2-related tumors. Following a chapter on radiopharmaceuticals in neuroendocrine imaging, it turns to the physics and technology of current and cutting-edge radiology, including SPECT/CT and PET/CT and PET/MR. Discussing of radionuclide imaging covers the tumors mentioned above, as well as pulmonary and thymic neuroendocrine tumors and medullary thyroid carcinoma. A presentation of radionuclide therapies follows, including 131I-MIBG therapy, somatostatin receptor-based therapy, and alpha radionuclide therapy, as well as the role of nanoparticles. Comprehensive and up-to-date, Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine Tumors will assist and guide physicians who encounter patients with these conditions, either from a diagnostic or therapeutic standpoint, and particularly emphasizes the current and emerging medical devices and imaging and therapeutic options.
This comprehensive reference illustrates optimal preparation
methods in biological electron microscopy compared with common
methodological problems. Not only will the basic methodologies of
transmission electron microscopy like fixation, microtomy, and
microscopy be presented, but the authors also endeavor to
illustrate more specialized techniques such as negative staining,
autoradiography, cytochemistry, immunoelectron microscopy, and
computer-assisted image analysis.
Senior scientists from neighboring and other NATO countries joined their efforts to help this region to get to know their problems, discussed their solutions and how they can be helped out. Distinguished experts described how they had succeeded in developing the solutions to such problem in their countries.
This book presents the latest scientific developments in the field
of positron emission tomography (PET) dealing with data
acquisition, image processing, applications, statistical analysis,
tracer development, parameter estimation, and kinetic modeling. It
covers improved methodology and the application of existing
techniques to new areas. The text also describes new approaches in
scanner design and image processing, and the latest techniques for
modeling and statistical analyses. This volume will be a useful
reference for the active brain PET scientist, as well as a valuable
introduction for students and researchers who wish to take
advantage of the capabilities of PET to study the normal and
diseased brain.
This book integrates concepts from physical acoustics with those from linear viscoelasticity and fractional linear viscoelasticity. Compressional waves and shear waves in applications such as medical ultrasound, elastography, and sediment acoustics often follow power law attenuation and dispersion laws that cannot be described with classical viscous and relaxation models. This is accompanied by temporal power laws rather than the temporal exponential responses of classical models. The book starts by reformulating the classical models of acoustics in terms of standard models from linear elasticity. Then, non-classical loss models that follow power laws and which are expressed via convolution models and fractional derivatives are covered in depth. In addition, parallels are drawn to electromagnetic waves in complex dielectric media. The book also contains historical vignettes and important side notes about the validity of central questions. While addressed primarily to physicists and engineers working in the field of acoustics, this expert monograph will also be of interest to mathematicians, mathematical physicists, and geophysicists.
The Basic Bookshelf for Eyecare Professionals is a series that provides fundamental and advanced material with a clinical approach to clinicians and students. A special effort was made to include information needed for the certification exams in ophthalmic and optometric assisting, low vision, surgical assisting, opticianry, and contact lens examiners. This concise, easy-to-read manual is an excellent introduction to the fundamental techniques of film based imaging of the eye. With a back-to-basics approach this text will reduce any fear or anxiety that you may have related to learning the craft of ocular photography. Clinical Ocular Photography is organized in a way that allows quick and easy understanding on a specific subject. Each chapter stands alone, allowing the reader to tackle one specific topic at a time. With clear explanations of all clinical uses of photography in ophthalmology, this book is the perfect resource for the beginning or experienced ocular photographer.
Positron emission tomography (PET) has been at the forefront of fu- tional and molecular imaging for a number of years. The future of di- nostic imaging depends upon the ability to change from imaging anatomy to examining the processes at work in the body. The fact that there are now monographs examining particular aspects of PET, such as this book on the examination of children, speaks to the newly won maturity of PET. The authors are to be congratulated for the timely appearance of this volume. In recent years, PET has transformed the contributions of nuclear medicine to the diagnosis, staging, and follow-up of patients with cancer. Children with cancer deserve the very best and most comp- sionate care that society can provide. Ultimately the greatest comp- sion we can offer as physicians is to provide the best possible care. Those charged with creating public policy in the context of diagnostic medicine must make common cause with physicians and other sci- tists to ensure that that best possible care is realized at the bedside. All of the evidence suggests that PET is central to such optimal cancer care. In addition to the distinguished cast of physicians and researchers who contributed to this book, I welcome the contributions from te- nologists who are a key part of the interaction between the diagnostic process and the sick or potentially sick child. Good care is contingent upon putting parents and child at ease, and the technologist has a lead role in this.
This book addresses patient-specific modeling. It integrates computational modeling, experimental procedures, imagine clinical segmentation and mesh generation with the finite element method (FEM) to solve problems in computational biomedicine and bioengineering. Specific areas of interest include cardiovascular problems, ocular and muscular systems and soft tissue modeling. Patient-specific modeling has been the subject of serious research over the last seven years and interest in the area is continually growing and this area is expected to further develop in the near future. |
![]() ![]() You may like...
Traffic Flow Dynamics - Data, Models and…
Martin Treiber, Arne Kesting
Hardcover
R3,179
Discovery Miles 31 790
Slabbert: Man On A Mission - A Biography
Albert Grundlingh
Paperback
Sustainable Consumption, Production and…
Paul Nieuwenhuis, Daniel Newman, …
Hardcover
R2,660
Discovery Miles 26 600
Emergence, Analysis and Evolution of…
Klaus Lucas, Peter Roosen
Hardcover
R4,399
Discovery Miles 43 990
|