![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Other branches of medicine > Medical imaging
Introduces both optical microscopy and medical imaging with an emphasis on recurring themes such as resolution and contrast to reinforce understanding. Includes many illustrations and boxed material that give more detailed explanations. Features hands-on activities and experiments. Provides end-of-chapter problems for self-study. Offers supplementary online materials including a solutions manual.
Immunoassay procedures (isotopic and non-isotopic) have become one of the single most important techniques in present-day diagnostic medicine. This book is designed as an introductory test for the staff of clinical research laboratories who conduct or intend to conduct such techniques, and will be of great value to the clinicians who make use of such services. The volume takes a three-pronged approach in it's in-depth presentation: explanation of the basic principles and applications of radioimmunoassays and non-isotopic immunoassays; practical illustrations of the various steps involved in immunoassays; discussion of the problems and pitfalls in immunoassays and how to avoid them. This fifth revised edition is a worthy successor to it's predecessors in this famous "Laboratory Techniques" series.
Measurement of Cardiac Deformations from MRI: Physical and Mathematical Models describes the latest imaging and imag analysis techniques that have been developed at leading centers for the visualization, analysis, and understanding of normal and abnormal cardiac motion with magnetic resonance imaging (MRI). The use of MRI in measuring cardiac motion is particularly important because MRI is non-invasive, and it is the only modality capable of imaging detailed intramural motion within the myocardium. Biomedical engineers, medical physicists, computer scientists, and physicians interested in learning about the latest advances in cardiovascular MRI should find this book to be a valuable educational resource. In particular, it is more tutorial in nature than most of the technical papers where the research was originally published. Practitioners and researchers working in the field of cardiovascular MRI will find the book to be filled with practical technical details and references to other work, enabling the implementation of existing methods and serving as a basis for further research in the area.
The second edition of this easy-to-understand pocket guide remains an invaluable tool for students, assistant practitioners and radiographers. Providing an accessible introduction to the subject in a reader-friendly format, it includes diagrams and photographs to support the text. Each chapter provides clear learning objectives and a series of MCQs to test reader assimilation of the material. The book opens with overviews of image production, basic mathematics and imaging physics, followed by detailed chapters on the physics relevant to producing diagnostic images using X-rays and digital technologies. The content has been updated throughout and includes a new chapter on CT imaging and additional material on radioactivity, dosimetry, and imaging display and manipulation. Clark's Essential Physics in Imaging for Radiographers supports students in demonstrating an understanding of the fundamental definitions of physics applied to radiography ... all you need to know to pass your exams!
The book provides a detailed, up-to-date account of the basics, the technology, and the clinical use of ion beams for radiation therapy. Theoretical background, technical components, and patient treatment schemes are delineated by the leading experts that helped to develop this field from a research niche to its current highly sophisticated and powerful clinical treatment level used to the benefit of cancer patients worldwide. Rather than being a side-by-side collection of articles, this book consists of related chapters. It is a common achievement by 76 experts from around the world. Their expertise reflects the diversity of the field with radiation therapy, medical and accelerator physics, radiobiology, computer science, engineering, and health economics. The book addresses a similarly broad audience ranging from professionals that need to know more about this novel treatment modality or consider to enter the field of ion beam therapy as a researcher. However, it is also written for the interested public and for patients who might want to learn about this treatment option.
There have been many great advances in the field of biomedical imaging in recent years, with supramolecular chemistry playing a key role in the evolution of modern imaging techniques. Non-covalent supramolecular interactions are fundamental to countless biological processes, from host-guest binding to the stabilisation of complex structures. Supramolecular chemistry techniques can be employed to create probes that can be targeted to either exploit or disrupt these interactions, giving the potential for both diagnostic and therapeutic effects. Furthermore, in techniques such as contrast enhanced MRI, controlling the interactions between solvent molecules and the imaging agent is crucial to the development of the technique. With rapid growth in the synthesis and study of molecular imaging agents, the understanding of their associated techniques has sometimes lagged behind. Supramolecular Chemistry in Biomedical Imaging will fill this gap by clarifying the state of current understanding and the nature of the underlying problems inherent to addressing problems in biology. It will cover both the techniques used in imaging and the molecular and supramolecular systems used to exploit them. This publication targets academics coming to the field from mainstream supramolecular chemistry, research graduates and undergraduates interested in supramolecular chemistry, synthesis or imaging agents and imaging techniques for biomedical applications.
This book presents the latest findings in mechanosensitivity of the nervous system. The nervous system stands out from a number of tissues because besides reacting to the mechanical stress it is transmitting its own response to other organs and tissues, which are located downstream of its signaling pathway. For this reason any type of mechanical stimulation of the nervous system, which is capable of triggering a physiological response, has high scientific and practical significance, since it allows its use beyond a particular experimental model anywhere where it is contributing to a particular pathological condition. This book is a unique collection of reviews outlining the current knowledge and the future developments in this rapidly growing field. Currently, investigations of the effects of mechanical stress on the nervous system are focused on several issues. The majority of studies investigate the effects of mechanical stimulation on mechanosensitive channels, as its primary target and interactive agent, and aim on description of downstream intracellular signaling pathways together with addressing general issues of biomechanics of the nervous system. Knowledge of biomechanics, and mechanisms, which underlie it on organism, organ, tissue and cellular level, is necessary for understanding of the normal functioning of living organisms and allows to predict changes which arise due to alterations of their environment, and possibly will allow to develop new methods of artificial intervention. The book brings up the problem closer to the experts in related medical and biological sciences as well as practicing doctors besides just presenting the latest achievements in the field.
This timely book presents innovative technologies for use in the diagnosis, monitoring, and treatment of brain disease. These technologies offer exciting possibilities in the medical field owing to their low-cost, portability and safety. The authors address cerebrovascular diseases such as stroke, ischemia, haemorrhage, and vasospasm, these diseases having an ever-increasing societal relevance due to the global ageing population. The authors describe the potential of novel techniques such as microwave imaging and present innovative modalities for treatment of brain tumours using electromagnetic fields and nano-composites, as well as for monitoring brain temperature during surgery. Finally, Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy addresses the perspectives which arise from multi-modal multi-spectral EM modalities, which make a synergic use of the different portions of the electromagnetic spectrum. This text will be of interest to readers from various different areas, given the fundamental interdisciplinarity of the subject matter. This includes researchers or practitioners in the field of electrical engineering, applied physicists, and applied mathematicians working on imaging applications for biomedical and electromagnetic technologies. Neurologists and radiologists may also find this book of interest, as may graduate students in these areas.
Taking a high-yield, "just the essentials" approach, Abdominal Imaging: The Core Requisites helps you establish a foundational understanding of both gastrointestinal and genitourinary imaging during rotations, prepare for the core and certifying exams, and refresh your knowledge of key concepts. This new title solves the "information overload" problem often faced by trainee and practicing radiologists by emphasizing the essential knowledge you need in an easy-to-ready hybrid format of traditional text and bullet points. Emphasizes a "just the essentials" approach to foundational abdominal imaging content presented in an easy-to-read, quick reference format, with templated content that includes numerous outlines, tables, pearls, boxed material, and bulleted text for easy reading and efficient recall. Helps you build and solidify core knowledge to prepare you for clinical practice with critical, up-to-date information on GI/GU topics, including relevant anatomy, lesion characterization, tumor staging, indication-based protocols and techniques, and more. Prioritizes high-yield topics and explains key information to help you efficiently and effectively prepare for board exams. Contains problem-based and disease-focused chapters such as right upper quadrant pain, chronic liver disease, colorectal cancer and screening, postoperative imaging, and abdominal/pelvic trauma. Includes reporting tips and recommendations with sample structured reports. Features more than 500 high-quality images spanning a variety of critical abdominal and pelvic disease processes, including discussions of advanced imaging techniques such as multiparametric MRI, dual energy CT, and elastography. Published as part of the newly reimagined Core Requisites series, an update to the popular Requisites series for today's busy clinician. Enhanced eBook version included with purchase. Your enhanced eBook allows you to access all of the text, figures, and references from the book on a variety of devices.
Master the critical physics content you need to know with this new title in the popular Case Review series. Imaging Physics Case Review offers a highly illustrated, case-based preparation for board review to help residents and recertifying radiologists succeed on exams and demonstrate a clinical understanding of physics, patient safety, and improvement of imaging accuracy and interpretation. Presents 150 high-yield case studies organized by level of difficulty, with multiple-choice questions, answers, and rationales that mimic the format of certification exams. Uses short, easily digestible chapters and high-quality illustrations for efficient, effective learning and exam preparation. Discusses current advances in all modalities, ensuring that your study is up-to-date and clinically useful. Covers today's key physics topics including radiation safety and methods to prevent patient harm; how to reduce artifacts; basics of radiation doses including dose reduction strategies; cardiac CT physics; advanced ultrasound techniques; and how to optimize image quality using physics principles. Enhanced eBook version included with purchase, which allows you to access all of the text, figures, and references from the book on a variety of devices
This is a practical guide to tomographic image reconstruction with projection data, with strong focus on Computed Tomography (CT) and Positron Emission Tomography (PET). Classic methods such as FBP, ART, SIRT, MLEM and OSEM are presented with modern and compact notation, with the main goal of guiding the reader from the comprehension of the mathematical background through a fast-route to real practice and computer implementation of the algorithms. Accompanied by example data sets, real ready-to-run Python toolsets and scripts and an overview the latest research in the field, this guide will be invaluable for graduate students and early-career researchers and scientists in medical physics and biomedical engineering who are beginners in the field of image reconstruction. A top-down guide from theory to practical implementation of PET and CT reconstruction methods, without sacrificing the rigor of mathematical background Accompanied by Python source code snippets, suggested exercises, and supplementary ready-to-run examples for readers to download from the CRC Press website Ideal for those willing to move their first steps on the real practice of image reconstruction, with modern scientific programming language and toolsets Daniele Panetta is a researcher at the Institute of Clinical Physiology of the Italian National Research Council (CNR-IFC) in Pisa. He earned his MSc degree in Physics in 2004 and specialisation diploma in Health Physics in 2008, both at the University of Pisa. From 2005 to 2007, he worked at the Department of Physics "E. Fermi" of the University of Pisa in the field of tomographic image reconstruction for small animal imaging micro-CT instrumentation. His current research at CNR-IFC has as its goal the identification of novel PET/CT imaging biomarkers for cardiovascular and metabolic diseases. In the field micro-CT imaging, his interests cover applications of three-dimensional morphometry of biosamples and scaffolds for regenerative medicine. He acts as reviewer for scientific journals in the field of Medical Imaging: Physics in Medicine and Biology, Medical Physics, Physica Medica, and others. Since 2012, he is adjunct professor in Medical Physics at the University of Pisa. Niccolo Camarlinghi is a researcher at the University of Pisa. He obtained his MSc in Physics in 2007 and his PhD in Applied Physics in 2012. He has been working in the field of Medical Physics since 2008 and his main research fields are medical image analysis and image reconstruction. He is involved in the development of clinical, pre-clinical PET and hadron therapy monitoring scanners. At the time of writing this book he was a lecturer at University of Pisa, teaching courses of life-sciences and medical physics laboratory. He regularly acts as a referee for the following journals: Medical Physics, Physics in Medicine and Biology, Transactions on Medical Imaging, Computers in Biology and Medicine, Physica Medica, EURASIP Journal on Image and Video Processing, Journal of Biomedical and Health Informatics.
This installment in the Techniques in Life Science and Biomedicine for the Non-Expert series aims to describe ESR spectroscopy as a tool for different applications, such as Healthcare & Pharmaceutical Science, Paleontology & Geochronology and Food Science. In keeping with the series theme, this text is presented in such a manner that the amateur researcher or graduate student can absorb it, while highlighting recent advances and applications of the field. Chapters include solved examples and questions to reinforce themes and encourage readers to apply what they've learnt.
This book highlights recent technological advances, reviews and applications in the field of cardiovascular engineering, including medical imaging, signal processing and informatics, biomechanics, as well as biomaterials. It discusses the use of biomaterials and 3D printing for tissue-engineered heart valves, and also presents a unique combination of engineering and clinical approaches to solve cardiovascular problems. This book is a valuable resource for students, lecturers and researchers in the field of biomedical engineering.
This open access book is only an introduction to show that radiation and radioisotopes (RI) are premier tools to study living plant physiology which leads to new findings. Who had ever imagined that we could see water in a plant? Who had ever imagined that we could see ions moving toward roots in solution? Who had ever imagined that we could see invisible gas (CO2) fixation and movement in a plant? These studies demonstrated for the first time that water, ions and gas can be visualized in living plants, which could be hardly seen by anyone before. This publication summarizes the results obtained by Nakanishi's lab in The Univ. of Tokyo, based on her original concept and her original tools or systems. It is useful for professional scientists, plant physiologist, and those studying plant imaging. The chapters demonstrates the innovative imaging work of the author, using radioactive tracers and neutron beam to follow the absorption and transport manner of water as well as major, minor, and trace elements in plants. Through these studies the author developed a real-time macroscopic and microscopic imaging system able to apply commercially available gamma- and beta-ray emitters. The real-time movement of the elements is now possible by using 14C, 18F, 22Na, 28Mg, 32P, 33P, 35S, 42K, 45Ca, 48V, 54Mn, 55Fe, 59Fe, 65Zn, 86Rb, 109Cd, and 137Cs. The imaging methods was applied to study the effect of 137Cs following 3/11 Fukushima Daiichi nuclear plant accident, which has revealed the movements of radiocesium in the contaminated sites.
Image synthesis across and within medical imaging modalities is an active area of research with broad applications in radiology and radiation oncology. This book covers the principles and methods of medical image synthesis, along with state-of-the-art research. First, various traditional non-learning-based, traditional machine-learning-based, and recent deep-learning-based medical image synthesis methods are reviewed. Second, specific applications of different inter- and intra-modality image synthesis tasks and of synthetic image-aided segmentation and registration are introduced and summarized, listing and highlighting the proposed methods, study designs, and reported performances with the related clinical applications of representative studies. Third, the clinical usages of medical image synthesis, such as treatment planning and image-guided adaptive radiotherapy, are discussed. Last, the limitations and current challenges of various medical synthesis applications are explored, along with future trends and potential solutions to solve these difficulties. The benefits of medical image synthesis have sparked growing interest in a number of advanced clinical applications, such as magnetic resonance imaging (MRI)-only radiation therapy treatment planning and positron emission tomography (PET)/MRI scanning. This book will be a comprehensive and exciting resource for undergraduates, graduates, researchers, and practitioners.
One of the first applications of ultrasound was in submarine sonar equip ment. Since then ultrasound has found increasing applications, particularly in industry, but increasingly in biomedicine. For many years ultrasound has been used in physical therapy, although only in the past decade or two has it evolved from laboratory curiosity to a well-established diagnostic imaging modality. Ultrasound is now a widely accepted, indeed pervasive, diagnos tic and therapeutic tool in the medical field, and its applications are increasing rapidly. Our intent in developing this book is to provide a coherent tutorial intro duction to the field of medical ultrasound at a level suitable for those en tering the area from either medical or scientific backgrounds. The topics discussed should be of interest to nearly all medical and health care per sonnel needing to understand or operate ultrasonic devices, including clini cians, medical technicians, physiotherapists, medical physicists, and other biomedical scientists interested in the field. The book opens with a description of the basic principles of propagating acoustic waves, explains how they interact with a wide range of biological systems, and outlines the effects they produce. To provide practical infor mation to operators of ultrasound equipment, we have included thorough coverage of the details of ultrasonic instrumentation and measurement techniques, and set forth the framework for an effective quality assurance program."
Reinforce your understanding of Hagen-Ansert's Textbook of Diagnostic Sonography, 9th Edition with this practical workbook! With chapters corresponding to the textbook, this study guide provides exercises allowing you to review, practice, and apply sonography concepts. Case studies offer opportunities to apply your knowledge to the clinical setting. Like the text, this edition of the workbook includes updated images and scans, in addition to content that reflects the newest curriculum standards. It's a useful review and an excellent preparation tool for national board examinations in diagnostic sonography! Review questions are presented in a variety of formats, including multiple-choice, matching, short answer, fill-in-the-blank, and labeling, with answers at the back of the book. Exercises in each chapter provide review and practice with terminology, anatomy, physiology, laboratory values, sonographic anatomy and technique, and pathology. Anatomy labeling activities test your ability to recognize anatomic structures in sonographic images. Review of key terms in each chapter allows you to test your knowledge of the terminology used in the textbook. Case studies include images from the textbook, testing your skills at identifying key anatomy and pathology and in interpreting sonographic findings. Content reviews include multiple-choice questions to test your knowledge of the four main content areas covered on ARDMS board exams: general sonography, pediatric, cardiovascular anatomy, and obstetrics and gynecology. NEW! Updated content keeps pace with the 9th edition of Textbook of Diagnostic Sonography, reflecting the newest curriculum standards and preparing you for the national board examinations. NEW! Updated images and scans reflect the latest advances in the field and help you prepare for boards and for clinicals.
This volume highlights the remarkable new developments in brain imaging, including those that apply magnetic resonance imaging (MRI) and Positron Emission Tomography (PET), that allow us to non invasively study the living human brain in health and in disease. These technological advances have allowed us to obtain new and powerful insights into the structure and function of the healthy brain as it develops across the life cycle, as well as the molecular make up of brain systems and circuits as they develop and change with age. New brain imaging technologies have also given us new insights into the causes of many common brain disorders, including ADHD, schizophrenia, depression and Alzheimer's disease, which collectively affect a large segment of the population. These new insights have major implications for understanding and treating these brain disorders, and are providing clinicians with the first ever set of biomarkers that can be used to guide diagnosis and monitor treatment effects. The advances in brain imaging over the last 20 years, summarized in this volume, represent a major advance in modern biomedical sciences. The Authors of this volume are leaders in the development of PET and MRI methods as well as clinical and translational researchers skilled in their use in patients with brain disorders. Individual chapters of this volume focus on the use of specific methodologies, covering the full range of PET chemistry based approaches as well as MRI methods from structural and diffusion tensor based imaging, to functional MRI of functional brain circuitry, to pharmacological MRI and MRI spectroscopic molecular imaging.
This book provides a comprehensive analysis of the value of contrast-enhanced ultrasound (CEUS) in the diagnosis of a wide variety of pathologies. Sonography reliably identifies a wide range of diseases, and the efficacy of modern ultrasound has dramatically improved with contrast enhancement. This book covers almost all aspects of CEUS starting from basic principles and ending with features of its application in individual organs. In particular, it explores the diseases of abdominal, retroperitoneal, and pelvic organs as well as superficial structures, highlighting the characteristic features of typical findings. Focal lesions are discussed in depth, with attention to their early detection and differential diagnosis. Besides, a practical approach to the stratification of the risk of malignancies is provided. The authors summarized their own experience with CEUS in oncology, hepatology, gynecology, urology, endocrinology, and other fields of medicine. The role of CEUS in differential diagnosis of various disorders of the female reproductive system is comprehensively discussed as well. The presentation is clear and concise, and richly illustrated. The book will be a helpful tool for both residents and practitioners approaching ultrasound diagnostics, as well for more experienced radiologists and other professionals.
The Comatose Patient, Second Edition, is a critical historical overview of the concepts of consciousness and unconsciousness, covering all aspects of coma within 100 detailed case vignettes. This comprehensive text includes principles of neurologic examination of comatose patients as well as instruction of the FOUR Score coma scale, and also discusses landmark legal cases and ethical problems. As the Chair of Division of Critical Care Neurology at Mayo Clinic, Dr. Wijdicks uses his extensive knowledge to discuss a new practical multistep approach to the diagnosis of the comatose patient. Additionally, this edition includes extensive coverage of the interpretation of neuroimaging and its role in daily practice and decision making, as well as management in the emergency room and ICU. Dr. Wijdicks details long-term supportive care and an appropriate approach to communication with family members about end-of-life decision making.
This volume provides an updated review of imaging abnormalities in orthopedic sports injuries. The first part of the book contains background information on relevant basic science and general imaging principles in sports traumatology. The second part comprises a topographic discussion of sports injuries. Each chapter highlights the merits of different imaging techniques, focused on a specific clinical problem. In the third part, natural history, monitoring and follow-up imaging are discussed.
This book covers virtually all aspects of image formation in medical imaging, including systems based on ionizing radiation (x-rays, gamma rays) and non-ionizing techniques (ultrasound, optical, thermal, magnetic resonance, and magnetic particle imaging) alike. In addition, it discusses the development and application of computer-aided detection and diagnosis (CAD) systems in medical imaging. Also there will be a special track on computer-aided diagnosis on COVID-19 by CT and X-rays images. Given its coverage, the book provides both a forum and valuable resource for researchers involved in image formation, experimental methods, image performance, segmentation, pattern recognition, feature extraction, classifier design, machine learning / deep learning, radiomics, CAD workstation design, human-computer interaction, databases, and performance evaluation. |
![]() ![]() You may like...
Deep Collusion - Bain And The Capture Of…
Athol Williams
Paperback
![]()
The Super Easy Teen Baking Cookbook - 60…
Marlynn Jayme Schotland
Paperback
Welcome to Our Table: A Celebration of…
Laura Mucha, Ed Smith
Hardcover
The Super Easy Teen Cookbook - 75 Simple…
Christina Hitchcock
Paperback
|