![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Medical physics
MRI Physics for Radiologsits: A Visual Approach, Third Edition delineates the principles of magnetic resonance imaging in a format that can be understood by readers who do not have a sophisticated physics or mathematics background. It is organized in three sections: sections one and two present the contrast and spatial characteristics of the image; section three deals with topics such as Half Fourier imaging, motion, aliasing, artifacts, and coils. The third edition has sections on new techniques now in common use, such as rectangular field of view and fast spin-echo (or echo-planar) sequences, a chapter on the effect of MR equipment parameters on image resolution, a chapter with a simplified mathematical discussion of the Fourier transform and an enhanced section on magnetic resonance angiography.
Radiotherapy remains a major non-surgical treatment modality for malignant disease, and an understanding of how this treatment works is essential in ensuring optimum practice. Trainees in oncology learn about ionising radiation, but to understand it fully they must also understand the physics relevant to its use in therapy. This book is written specifically for the oncology and radiation team, supporting clinical oncologists in their understanding of the science which underpins radiotherapy. It begins with basic concepts and then explores the principles and practice of physics as it relates to radiotherapy, including discussion of specific types of therapy. Written by authors chosen for their expertise in in their respective fields, and aligned to the Royal College of Radiologists FRCR Curriculum in Oncology, this volume will provide an excellent source of information for trainee and practicing oncologists, and wider radiotherapy teams. This second edition has been fully updated to reflect advances in technology and the increased complexity in modern radiotherapy, including two new chapters on imaging and a new brachytherapy chapter.
Das vorliegende Werk bietet eine im deutschsprachigen Raum einzigartige, umfassende und aktuelle Darstellung der Medizinischen Physik. Es liefert damit das Fundament fur die Anwendung physikalischer Methoden in der Medizin, der Entwicklung neuer oder verbesserter Verfahren zur Untersuchung und Behandlung von Patienten sowie fur die Bereitstellung und den Einsatz physikalischer Methoden in der klinischen Anwendung. Es unterstutzt als Lehrbuch den Bedarf nach einer systematischen medizinphysikalischen Aus- und Weiterbildung von Physikern, die an medizinischen Einrichtungen tatig sind. Das Buch orientiert sich am Stoffkatalog der Deutschen Gesellschaft fur Medizinische Physik (DGMP) und legt den Schwerpunkt auf die Medizinische Physik in der Radiologie und Radioonkologie. Das Werk ist in funf Teile unterteilt: * In Teil I werden die Grundlagen der Strahlenphysik, der biostatistischen Methoden, der Medizinischen Informatik, der organisatorischen und rechtlichen Aspekte sowie des Strahlenschutzes abgehandelt. * Teil II behandelt die radiologische Diagnostik und umfasst die bildgebenden Verfahren der Roentgendiagnostik, der Roentgen-Computertomographie, der Magnetresonanztomographie sowie des Ultraschalls. * Teil III beschreibt die Methoden der nuklearmedizinischen Diagnostik und Therapie. * In Teil IV wird die Medizinische Physik der Strahlentherapie in vertiefter Form dargestellt. * Teil V beschreibt ausgewahlte Themen aus dem Gebiet der Medizintechnik. Zu allen Teilen werden UEbungsaufgaben und Kontrollfragen angeboten, mit denen der Leser das Gelernte uberprufen kann. Erganzend werden auf einer Website Musterloesungen, zusatzliches vertiefendes Text- und Bildmaterial sowie Animationen und Videos zur Verfugung gestellt. Das Buch versteht sich als Lehrbuch und Nachschlagewerk, das begleitend zu Weiterbildungsveranstaltungen und Studiengangen oder auch zum Selbststudium auf dem Gebiet der Medizinischen Physik eingesetzt werden kann. Es basiert auf dem Heidelberger Weiterbildungskurs "Medizinische Physik fur Physiker" und richtet sich vornehmlich an Physik-Absolventen und Naturwissenschaftler mit grundlegenden physikalischen Kenntnissen. Die Herausgeber sind als Wissenschaftler am Deutschen Krebsforschungszentrum (dkfz) tatig und lehren als Professoren fur Medizinische Physik an der Universitat Heidelberg.
Imaging is a critical component in the delivery of radiotherapy to patients with malignancy, and this book teaches the principles and practice of imaging specific to radiotherapy. Introductory chapters outline the basic principles of the available imaging modalities including x-rays, CT, ultrasound, MRI, nuclear medicine, and PET. Site specific chapters then cover the main tumour sites, reviewing optimal imaging techniques for diagnosis, staging, radiotherapy planning, and follow-up for each site. The important areas of radiation protection, exposure justification, and risks are also covered, exploring issues such as balancing radiation exposure with long-term risks of radiation effects, such as second cancer induction. This second edition has been fully revised and updated to reflect current techniques, and includes two brand new chapters on imaging for radiotherapy treatment verification, and the role of specialist MRI techniques and functional imaging for radiotherapy planning. With insights from experts in each field and over 200 illustrations, this comprehensive and easy-to-read guide will be an invaluable resource for radiation oncologists, clinical oncologists, and radiotherapists, both qualified and in training. ABOUT THE SERIES Radiotherapy remains the major non-surgical treatment modality for the management of malignant disease. It is based on the application of the principles of applied physics, radiobiology, and tumour biology to clinical practice. Each volume in the series takes the reader through the basic principles of the use of ionizing radiation and then develops this by individual sites. This series of practical handbooks is aimed at physicians both training and practising in radiotherapy, as well as medical physics, dosimetrists, radiographers, and senior nurses.
This book examines the health effects of exposure to static electric and magnetic fields found in selected industries, such as medical facilities with magnetic resonance imaging (MRI), high-energy physics research facilities and some transportation systems. To date, research on their health effects lags far behind the rapid advances in technology. Electric and magnetic fields are generated by natural phenomena such as the Earth s magnetic field, thunderstorms, and by man-made sources that use electricity. When such fields do not vary with time they are referred to as static. For static electric fields, studies carried out to date suggest that the main effect is discomfort from electric discharges to the body. For static magnetic fields, acute effects are only likely to occur when there is movement of a person in the field. For example, a person moving within a relatively high field can experience sensations of vertigo and nausea, and sometimes a metallic taste in the mouth and perceptions of light flashes. Although only temporary, such effects may have a safety impact for workers executing delicate procedures, e.g. surgeons performing operations within MRI units. Even when at rest, a person will experience internal body movement, such as blood flow or heart beat. When placed within a high magnetic field, electrical fields and currents are generated around the heart and major blood vessels that can impede the flow of blood. Possible effects range from minor changes in heartbeat to an increase in the risk of abnormal heart rhythms that might be life threatening."
This new volume in the Radiotherapy in Practice series provides a comprehensive and evidence-based guide to radiotherapy in the management of children and young people with cancer. It explains the roles of the various modalities of treatment available, including image-guided and intensity modulated radiotherapy, brachytherapy, proton beam therapy, and molecular radiotherapy, and aids selection of the most appropriate technique in different situations. Each cancer type in children is explored, including diagnostic investigations, risk stratification, multi-modality approaches to treatment, and decision making with regard to radiotherapy. Specific guidance is given for the planning and prescription of radiotherapy for infants, children, and teenagers. The authors also identify the need for specialist paediatric radiotherapy service provision, and the wider requirements for radiotherapy in children, including consent, immobilisation, anaesthesia, multi-professional team working, and play specialist support. With over 75 colour illustrations, case histories to demonstrate the various approaches, and a carefully selected guide to further reading on each topic, this practical volume will be a valuable resource for physicians and trainees in radiotherapy and clinical oncology, and to nurses, radiographers and other allied health professionals who come into contact with young patients receiving radiotherapy. ABOUT THE SERIES Radiotherapy remains the major non-surgical treatment modality for the management of malignant disease. It is based on the application of the principles of applied physics, radiobiology, and tumour biology to clinical practice. Each volume in the series takes the reader through the basic principles of the use of ionizing radiation and then develops this by individual sites. This series of practical handbooks is aimed at physicians both training and practising in radiotherapy, as well as medical physics, dosimetrists, radiographers, and senior nurses.
Expanding on the highly successful first edition, this second edition of Proton Therapy Physics has been completely restructured and updated throughout, and includes several new chapters. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, this book provides an in-depth overview of the physics of this radiation therapy modality, eliminating the need to dig through information scattered across medical physics literature. After tracing the history of proton therapy, the book explores the atomic and nuclear physics background necessary for understanding proton interactions with tissue. The text then covers dosimetry, including beam delivery, shielding aspects, computer simulations, detector systems and measuring techniques for reference dosimetry. Important for daily operations, acceptance testing, commissioning, quality assurance and monitor unit calibrations are outlined. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. Imaging for treatment guidance as well as treatment monitoring is outlined. Finally, the biological implications of using protons from a physics perspective are discussed. This book is an ideal practical guide for physicians, dosimetrists, radiation therapists, and physicists who already have some experience in radiation oncology. It is also an invaluable reference for graduate students in medical physics programs, physicians in their last year of medical school or residency, and those considering a career in medical physics. Features: Updated with the latest technologies and methods in the field, covering all delivery methods of proton therapy, including beam scanning and passive scattering Discusses clinical aspects, such as treatment planning and quality assurance Offers insight on the past, present, and future of proton therapy from a physics perspective
A state-of-the-art review of key topics in medical image perception science and practice, including associated techniques, illustrations and examples. This second edition contains extensive updates and substantial new content. Written by key figures in the field, it covers a wide range of topics including signal detection, image interpretation and advanced image analysis (e.g. deep learning) techniques for interpretive and computational perception. It provides an overview of the key techniques of medical image perception and observer performance research, and includes examples and applications across clinical disciplines including radiology, pathology and oncology. A final chapter discusses the future prospects of medical image perception and assesses upcoming challenges and possibilities, enabling readers to identify new areas for research. Written for both newcomers to the field and experienced researchers and clinicians, this book provides a comprehensive reference for those interested in medical image perception as means to advance knowledge and improve human health.
Bone is a complex biological material that consists of both an
inorganic and organic phase, which undergoes continuous dynamic
biological processes within the body. This complex structure and
the need to acquire accurate data have resulted in a wide variety
of methods applied in the physical analysis of bone in vivo and in
vitro. Each method has its own strengths and applications depending
on the information sought by the clinician or researcher.
This comprehensive and topical volume presents a number of significant advances on many fronts in this area of research, particularly emphasizing current and future biomedical applications of electromagnetic fields.
Each year, the Annual BCI Research Award recognizes the top new projects in brain-computer interface (BCI) research. This book contains summaries of these projects from the 2017 BCI Research Award. Each chapter is written by the group that submitted the BCI project that was nominated, and introduction and discussion chapters provide supporting information and explore trends that are reflected in the annual awards each year. One of the prominent trends in recent years has been BCIs for new patient groups, and many chapters in this book present emerging research directions that might become more prevalent in the near future.
This book introduces and reviews all of the currently available methods being used for computational electroencephalogram (EEG) analysis, from the fundamentals through to the state-of-the-art. The aim of the book is to help biomedical engineers and medical doctors who use EEG to better understand the methods and applications of computational EEG analysis from a single, well-organized resource. Following a brief introduction to the principles of EEG and acquisition techniques, the book is divided into two main sections. The first of these covers analysis methods, beginning with preprocessing, and then describing EEG spectral analysis, event-related potential analysis, source imaging and multimodal neuroimaging, and functional connectivity analysis. The following section covers application of EEG analysis to specific fields, including the diagnosis of psychiatric diseases and neurological disorders, brain-computer interfacing, and social neuroscience. Aimed at practicing medical specialists, engineers, researchers and advanced students, the book features contributions from world-renowned biomedical engineers working across a broad spectrum of computational EEG analysis techniques and EEG applications.
Brachytherapy remains an important component of radical radiation
therapy in the modern management of cancer. Widespread adoption of
remote afterloading now enables brachytherapy to be delivered with
minimum exposure to staff and other patients. Technical advances in
imaging and computing power have improved the precision of
implantation and complex dosimetry can now be achieved in routine
practice. The advantages of direct placement of the radiation
source into the area to be treated, overcoming the problems of
patient and organ movement, together with the dosimetric advantages
inherent in brachytherapy, will ensure that modern brachytheraoy
continues to provide the optimal means of delivering accurate high
does radiation therapy for many patients.
Radioisotope therapy is an internal form of radiation used to treat cancer; it may be administered orally or intravenously and represents the nearest treatment option to the 'magic bullet', specifically targeting sites of disease whilst sparing surrounding normal tissues. Radioisotope therapy has an important role to play in modern medicine, particularly in the treatment of thyroid disease, neuroendocrine tumours, bone metastasis and non-Hodgkin's lymphoma. It is found in both the diagnostic setting and in therapy, but recently there has been a renaissance in the application of radioisotope unsealed sources in therapeutic indications. It is an active area of research, with the quest for new compounds that will be specific for therapeutic targets. This book is an essential, practical guide to the use of radioisotope therapy, and also includes the background and developmental biology which underpins its use. Individual tumours and diseases are explored, with specific focus given to radioisotope treatment options. The barriers to radioisotope therapy, such as ease of access, acquisition of radioisotopes, radiation protection regulations, and cost are also discussed. ABOUT THE SERIES Radiotherapy remains the major non-surgical treatment modality for the management of malignant disease, with over 50% of patients receiving treatment at some time during the management of their malignant disease. It is based on the application of the principles of applied physics, radiobiology, and tumour biology to clinical practice. Each volume in this series takes the reader through the basic principles of different types of radiotherapy, and then develops these by individual sites. This series of practical handbooks are aimed at physicians both training and practising in radiotherapy, as well as medical physicists, dosimetrists, radiographers and senior nurses.
Radiotherapy has been one of the principal modalities for the treatment of malignant disease for more than 50 years. From the outset, its advancement has depended on the work of physicists and engineers, in particular for the development of high-energy accelerators for X-ray and electron beams, and in the production of radioactive sources. In addition, the clinical application of ionizing radiations for therapy is based on the foundation of dosimetric concepts and instrumentation. Medical physics plays a pivotal role in many areas, including treatment equipment, dosimetry, treatment planning, and radiation protection. Radiotherapy physics, second edition is a comprehensive, practical introduction to radiotherapy physics. It provides detailed descriptions of current techniques, written by experienced practitioners who review current methods and give specific guidance in their own areas of expertise. This new edition reflects the significant changes that have occurred in radiotherapy equipment and techniques - the routine use of MLCs, the delivery of IMRT, advances in imaging technology for planning (eg MRI, CT-simulator) and for treatment verification (EPIDs). There have also been significant changes in dosimetry, which have resulted in new dosimetry protocols. Trainee and qualified medical physicists, radiographers, radiation oncologists, and other personnel involved in radiotherapy will find this book to be an excellent guide to this important specialty.
Das Aachener Steinkohlengebiet zeichnet sich im Vergleich zu den Steinkohlen lagerstiitten des niederrheinisch-westfiilischen Gebietes durch eine groBe tek tonische und stratigraphische Mannigfaltigkeit aus. Trotz jahrelanger Forschungen auf dies em Gebiet ist es auch heute noch in der Praxis nicht moglich, eine sichere Identifizierung der FlOze an Hand einfacher Untersuchungsmethoden vorzuneh men. Eine gleichmiiBige Ausbildung der Gesteinsschichten ist nur flir regional eng begrenzte Riiume zu erwarten, und die Aufstellung eines fiir das gesamte Gebiet giiltigen Normalprofils ist nicht moglich. Selbst die fiir einzelne Gruben angefertig ten Schichtenprofile lassen nur anniiherungsweise Schliisse auf die Ablagerungsfol ge in diesem beschriinkten Gebiet zu. In der Hoffnung, weitere, bisher nicht beriicksichtigte, charakteristische Merk male der Gesteine aufzuspiiren, die moglicherweise zur Identifizierung der FlOze herangezogen werden konnten, wurden die Untersuchungen der Radioaktivitiit der Sedimente im Aachener Raum begonnen. In den letzten Jahren wurden eine Reihe von Arbeiten, die sich mit Radioaktivitiits messungen befassen, veroffentlicht. So beschrieb KOHL in seiner Monographie iiber das Vorkommen von Uran ( 17], 1954) und anderen Aufsiitzen ( 19], 1951) die Bemiihungen franzosicher Wissenschaftler urn die Auffindung mariner Hori zonte mittels Radioaktivitiitsmessungen. Marine Schichten weisen im Gebiet von Valenciennes eine bis zu zehnfach hoheren Radiumgehalt als nichtmarine Sedi mente auf. Als Grund fiir diese Erscheinungen werden sekundiire Absorptions effekte von Uran an Tonmineralien bzw. die Ausfiillung von Radium aus dem Meerwasser wiihrend der Sedimentation ( 18], 1951) angenommen."
Recent advances witness the potential to employ nanomedicine and game-changing methods to deliver drug molecules directly to diseased sites. To optimize and then enhance the efficacy and specificity, the control and guidance of drug carriers in vasculature has become crucial. Current bottlenecks in the optimal design of drug carrying particles are the lack of knowledge about the transport of particles, adhesion on endothelium wall and subsequent internalization into diseased cells. To study the transport and adhesion of particle in vasculature, the authors have made great efforts to numerically investigate the dynamic and adhesive motions of particles in the blood flow. This book discusses the recent achievements from the establishment of fundamental physical problem to development of multiscale model, and finally large scale simulations for understanding transport of particle-based drug carriers in blood flow.
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfangen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen fur die historische wie auch die disziplingeschichtliche Forschung zur Verfugung, die jeweils im historischen Kontext betrachtet werden mussen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
3 der Spannung durchdringender, harter werden, ist also ebenfalls eine Folge der Quantengleichung (vgI. ds. Handb., 2. Auf I., Bd. XXIII/2, Kap. 2). Der lichtelektrische Effekt im Rontgengebiet, d. h. die Auslosung sekundarer Elektronen durch monochromatische Rontgenstrahlen, ist bisher noch nicht zur genauen Bestimmung von h verwertet worden. Zwar ist die beim lichtelektrischen Effekt im optischen Gebiet wesentliche "Austrittsarbeit" P von wenigen Volt gegeniiber der nach vielen tausend Volt zahlenden Geschwindigkeit der Elek tronen, die die Rontgenstrahlen erzeugen, nur eine unbedeutende Korrektions groBe; dafiir tritt aber die Ablosearbeit der fest ans Atom gebundenen, inneren Atomelektronen in Wirksamkeit, die von ahnlicher GroBe wie die Quanten energie h. y der aus16senden Rontgenstrahlen ist. Die groBte Intensitat der sekundaren Elektronen besitzen gerade die festgebundenen Elektronen, fiir deren Abtrennung die wirksame Quantenenergie eben hinreicht; zugleich treten aber auch Elektronen aus dem bestrahlten Korper aus, die aus anderen Energie stufen des Atoms stammen, und es ist bisher noch nicht gelungen, die Geschwindig keit der entstehenden, verschieden schnellen Elektronen so genau zu messen, daB die hieraus abgeleitete h-Bestimmung an die Genauigkeit der anderen Me 1 thoden heranreichte Auch die ElektronenstoBmethode ist im Rontgengebiet prinzipiell anwendbar. Es ist niimlich, ahnlich wie im optischen Gebiet, eine durch die Quantengleichung scharf bestimmte Geschwindigkeit der Elektronen erforderlich, urn die Rontgen spektrallinien zu erzeugen, allerdings entstehen alle Linien einer "Serie" (z. B. der K-Serie) auf einmal, wenn die kiirzestwellige Linie dieser Serie erregt wird."
Das vorliegende Buch ist als Fortsetzung der "Probleme der Zellteilung" gedacht, deren Inhalt daher als bekannt vorausgesetzt wird. Ich habe jede Wiederholung des im ersten Bande Ent haltenen vermieden und fuhre den Leser sofort in medias res ein. Es wird sicher auffallen, dass im Gegensatz zum ersten Bande das Problem der Zellteilung als solches ganz in den Hintergrund tritt und gar nicht diskutiert wird. Es zeigte sich namlich in den letzten Jahren immer mehr, dass hier ein weiteres Vordringen auf dem von uns eingeschlagenen Wege eine gewaltige Vorarbeit auf anderen Gebieten der mitogenetischen Strahlungsforschung voraussetzte, die uns in den verflossenen Jahren vollstandig in Anspruch nahm, aber jetzt zu einem gewissen, partiellen Ab schlusse gelangte, da die wesentlichen Vorbedingungen des Zu standekommens des mitogenetischen Effektes gegenwartig als einigermassen geklart gelten durften. Das Buch ist im ubrigen in viel geringerem Masse eine Zu sammenfassung des bisher Veroffentlichten, als eine abgerundete Darstellung und theoretische Verwertung einer sehr grossen Anzahl neuerer Ergebnisse, sowohl aus unserem Laboratorium, wie auch von fremden Forschern, die mir ihre Ergebnisse in freundlicher Weise zur Verfugung stellten. Die ganze Lehre von der mito genetischen Strahlung erhalt nunmehr ein in manchen Zugen vollig neues Gewand, welches hoffentlich zur Klarung der noch bestehenden Missverstandnisse fuhren wird. Denn anders als mit diesem Namen kann ich die vereinzelten skeptischen Ausserungen der allerletzten Zeit nicht bezeichnen."
|
![]() ![]() You may like...
Sigma Proteins: Evolution of the Concept…
Felix J. Kim, Gavril W. Pasternak
Hardcover
R9,149
Discovery Miles 91 490
Writing Research - Transforming Data…
Judith Clare, Helen Hamilton
Paperback
R915
Discovery Miles 9 150
CCN proteins in health and disease - An…
Annick Perbal, Masaharu Takigawa, …
Hardcover
R4,411
Discovery Miles 44 110
|