![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Medical physics
The first in a three-volume set exploring Problems and Solutions in Medical Physics, this volume explores common questions and their solutions in Diagnostic Imaging. This invaluable study guide should be used in conjunction with other key textbooks in the field to provide additional learning opportunities. It contains key imaging modalities, exploring X-ray, mammography, and fluoroscopy, in addition to computed tomography, magnetic resonance imaging, and ultrasonography. Each chapter provides examples, notes, and references for further reading to enhance understanding. Features: Consolidates concepts and assists in the understanding and applications of theoretical concepts in medical physics Assists lecturers and instructors in setting assignments and tests Suitable as a revision tool for postgraduate students sitting medical physics, oncology, and radiology sciences examinations
This book explores outcome modeling in cancer from a data-centric perspective to enable a better understanding of complex treatment response, to guide the design of advanced clinical trials, and to aid personalized patient care and improve their quality of life. It contains coverage of the relevant data sources available for model construction (panomics), ranging from clinical or preclinical resources to basic patient and treatment characteristics, medical imaging (radiomics), and molecular biological markers such as those involved in genomics, proteomics and metabolomics. It also includes discussions on the varying methodologies for predictive model building with analytical and data-driven approaches. This book is primarily intended to act as a tutorial for newcomers to the field of outcome modeling, as it includes in-depth how-to recipes on modeling artistry while providing sufficient instruction on how such models can approximate the physical and biological realities of clinical treatment. The book will also be of value to seasoned practitioners as a reference on the varying aspects of outcome modeling and their current applications. Features: Covers top-down approaches applying statistical, machine learning, and big data analytics and bottom-up approaches using first principles and multi-scale techniques, including numerical simulations based on Monte Carlo and automata techniques Provides an overview of the available software tools and resources for outcome model development and evaluation, and includes hands-on detailed examples throughout Presents a diverse selection of the common applications of outcome modeling in a wide variety of areas: treatment planning in radiotherapy, chemotherapy and immunotherapy, utility-based and biomarker applications, particle therapy modeling, oncological surgery, and the design of adaptive and SMART clinical trials
This book is designed to convey as much information as possible in a concise and simple way to make it suitable for students, researchers and clinical medical physicists. Better meanings, codes and examples are included. Most of the basics are also covered for easy reference along with a glossary of objective-type questions. Upon completion of this textbook, the readers will gather knowledge about the physics, chemistry and biology of the human body towards cancer treatment using radiation.
Bridging the gap between research and clinical application, Biosensors and Molecular Technologies for Cancer Diagnostics explores the use of biosensors as effective alternatives to the current standard methods in cancer diagnosis and detection. It describes the major aspects involved in detecting and diagnosing cancer as well as the basic elements of biosensors and their applications in detection and diagnostics. The book addresses cancer molecular diagnostics, including genomic and proteomic approaches, from the perspective of biosensors and biodetection. It explains how to measure and understand molecular markers using biosensors and discusses the medical advantages of rapid and accurate cancer diagnostics. It also describes optical, electrochemical, and optomechanical biosensor technologies, with a focus on cancer analysis and the clinical utility of these technologies for cancer detection, diagnostics, prognostics, and treatment. Making biosensor technology more accessible to molecular biologists, oncologists, pathologists, and engineers, this volume advances the integration of this technology into mainstream clinical practice. Through its in-depth coverage of a range of biosensors, the book shows how they can play instrumental roles in the early molecular diagnosis of cancer.
Fosters a thorough understand of radiation dosimetry concepts: detailed solutions to the exercises in the textbook "Fundamentals of Ionizing Radiation Dosimetry"!
Analytical measurements at the single molecule level under ambient conditions have become almost routine in the past few years. The application of this technology to fundamental studies of heterogeneity in biomolecular structure and dynamics, chemical and biological reaction kinetics, and photophysics provides a rich playground for molecular scientists. The potential use of single molecule detection for nanotechnology and quantum information processing is a new and almost unexplored area. This handbook is intended for those interested in a practical introduction to single molecule investigations using fluorescence techniques and places special emphasis on the practicalities of achieving single molecule resolution, analysing the resulting data and exploration of the applications in biophysics. It is ideal for graduate research students and others embarking on work in this exciting field.
Brachytherapy remains an important component of radical radiation
therapy in the modern management of cancer. Widespread adoption of
remote afterloading now enables brachytherapy to be delivered with
minimum exposure to staff and other patients. Technical advances in
imaging and computing power have improved the precision of
implantation and complex dosimetry can now be achieved in routine
practice. The advantages of direct placement of the radiation
source into the area to be treated, overcoming the problems of
patient and organ movement, together with the dosimetric advantages
inherent in brachytherapy, will ensure that modern brachytheraoy
continues to provide the optimal means of delivering accurate high
does radiation therapy for many patients.
With every chapter revised and updated, Physics for Diagnostic Radiology, Third Edition continues to emphasise the importance of physics education as a critical component of radiology training. This bestselling text helps readers understand how various imaging techniques work, from planar analogue and digital radiology to computed tomography (CT), nuclear medicine, and positron emission tomography (PET) to ultrasound imaging and magnetic resonance imaging (MRI). New to the Third Edition
After an introductory chapter on basic physics, the book follows the x-ray imaging process: production of x-rays, interaction with the patient, radiation measurement, the image receptor, the radiological image, and image quality assessment. It then covers more advanced x-ray techniques as well as imaging with radioactive materials. The text also focuses on radiobiology, risk and radiation protection, and imaging with non-ionising radiation. The final chapter discusses data handling in a modern, electronic radiology department.
Radioisotope therapy is an internal form of radiation used to treat cancer; it may be administered orally or intravenously and represents the nearest treatment option to the 'magic bullet', specifically targeting sites of disease whilst sparing surrounding normal tissues. Radioisotope therapy has an important role to play in modern medicine, particularly in the treatment of thyroid disease, neuroendocrine tumours, bone metastasis and non-Hodgkin's lymphoma. It is found in both the diagnostic setting and in therapy, but recently there has been a renaissance in the application of radioisotope unsealed sources in therapeutic indications. It is an active area of research, with the quest for new compounds that will be specific for therapeutic targets. This book is an essential, practical guide to the use of radioisotope therapy, and also includes the background and developmental biology which underpins its use. Individual tumours and diseases are explored, with specific focus given to radioisotope treatment options. The barriers to radioisotope therapy, such as ease of access, acquisition of radioisotopes, radiation protection regulations, and cost are also discussed. ABOUT THE SERIES Radiotherapy remains the major non-surgical treatment modality for the management of malignant disease, with over 50% of patients receiving treatment at some time during the management of their malignant disease. It is based on the application of the principles of applied physics, radiobiology, and tumour biology to clinical practice. Each volume in this series takes the reader through the basic principles of different types of radiotherapy, and then develops these by individual sites. This series of practical handbooks are aimed at physicians both training and practising in radiotherapy, as well as medical physicists, dosimetrists, radiographers and senior nurses.
A state-of-the-art review of key topics in medical image perception science and practice, including associated techniques, illustrations and examples. This second edition contains extensive updates and substantial new content. Written by key figures in the field, it covers a wide range of topics including signal detection, image interpretation and advanced image analysis (e.g. deep learning) techniques for interpretive and computational perception. It provides an overview of the key techniques of medical image perception and observer performance research, and includes examples and applications across clinical disciplines including radiology, pathology and oncology. A final chapter discusses the future prospects of medical image perception and assesses upcoming challenges and possibilities, enabling readers to identify new areas for research. Written for both newcomers to the field and experienced researchers and clinicians, this book provides a comprehensive reference for those interested in medical image perception as means to advance knowledge and improve human health.
This book recounts the developments of fundamental electrodynamics from Ampère's investigation of the forces between electric currents to Einstein's introduction of a new doctrine of space and time. The emphasis is on the diverse, evolving practices of electrodynamics and the interactions between the corresponding scientific traditions. A richly documented, clearly written, and abundantly illustrated history of the subject.
This book gives important details of how surgery of the hip joint has evolved around the world. The 22 original chapters are written by experienced consultants, including Drs. John O'Donnell (Melbourne, Australia), Manfred Krieger and Ilan Elias (Frankfurt, Germany), and Nicholas Goddard (London, U.K.). Each chapter is accompanied by excellent, unique figures and references at the end for further reading. The book focuses on several important topics such as the direct anterior approach to the hip joint, setup of a total hip in a day, early experiences in outpatient hip surgery, advances in short-stem total hip arthroplasty (which is becoming increasingly popular in Europe and also worldwide), advances in hemophilic hip joint arthropathy, mesenchymal stem cell treatment of cartilage lesions in the hip over the next few decades, and minimally invasive surgery of the hip joint. This book is a must-have and invaluable reference for any student interested in the progress in hip joint surgery
Radiotherapy has been one of the principal modalities for the treatment of malignant disease for more than 50 years. From the outset, its advancement has depended on the work of physicists and engineers, in particular for the development of high-energy accelerators for X-ray and electron beams, and in the production of radioactive sources. In addition, the clinical application of ionizing radiations for therapy is based on the foundation of dosimetric concepts and instrumentation. Medical physics plays a pivotal role in many areas, including treatment equipment, dosimetry, treatment planning, and radiation protection. Radiotherapy physics, second edition is a comprehensive, practical introduction to radiotherapy physics. It provides detailed descriptions of current techniques, written by experienced practitioners who review current methods and give specific guidance in their own areas of expertise. This new edition reflects the significant changes that have occurred in radiotherapy equipment and techniques - the routine use of MLCs, the delivery of IMRT, advances in imaging technology for planning (eg MRI, CT-simulator) and for treatment verification (EPIDs). There have also been significant changes in dosimetry, which have resulted in new dosimetry protocols. Trainee and qualified medical physicists, radiographers, radiation oncologists, and other personnel involved in radiotherapy will find this book to be an excellent guide to this important specialty.
This book aims to examine all immunohistochemical and molecular pathological biomarkers that can be useful and effective in patient diagnosis, prognosis and treatment decision, especially when faced with a carcinoma of unknown primary. For this purpose, epithelial malignancies of all systems and related biomarkers are examined one by one, and to look at the subject through the metastatic regions window, biomarkers that can be used to determine the primary focus for carcinomas seen in the areas most frequently metastasized are emphasized. With this bi-directional perspective, the reader is able to find biomarkers of any type of carcinoma on a system basis, as well as access to which biomarkers can be used when faced with a metastatic carcinoma. The importance of biomarkers in patient follow-up and treatment is also conveyed through the clinician's eye, and so biomarkers are handled with a holistic approach in all aspects. This book primarily targets pathologists, as well as clinicians (oncologists and surgeons) who manage cancer patients.
This book explains the exciting field of sonomyography (SMG), which makes it possible to use continuous signals detected by ultrasound images in real time to evaluate muscle functions. After an introduction, the book discusses the methods to extract and analyse different SMG signals, including muscle thickness, penetration angle, fascicle length, contraction activity, and muscle cross-sectional areas, etc. It then describes the mono-modal applications of sonomyography: posture recognition, prosthesis control, muscle training, muscle strength (fall risk assessment), fatigue assessment, and the assessment of dysfunctional muscles. The book also shows how to combine sonomyography with additional muscle assessment methods, in particular EMG, MMG, and motion sensors. Lastly, it provides an overview of the potential applications in sport science, rehabilitation, fitness, and elderly health.
This volume of the series Springer Briefs in Space Life Sciences explains the physics and biology of radiation in space, defines various forms of cosmic radiation and their dosimetry, and presents a range of exposure scenarios. It also discusses the effects of radiation on human health and describes the molecular mechanisms of heavy charged particles' deleterious effects in the body. Lastly, it discusses countermeasures and addresses the vital question: Are we ready for launch? Written for researchers in the space life sciences and space biomedicine, and for master's students in biology, physics, and medicine, the book will also benefit all non-experts endeavouring to understand and enter space.
This new book educates readers about new technologies before they appear in hospitals, enabling medical physicists and clinicians to prepare for new technologies thoroughly and proactively, and provide better patient care once new equipment becomes available. Emerging technologies in imaging, treatment planning, treatment delivery, dosimetry and informatics are all discussed. The book is divided into three parts: recently developed technologies available for practice; technologies under development nearing completion; and technologies in an early stage of development that could have potential radiotherapy applications. Features: Introduces emerging technologies in imaging, treatment planning, treatment delivery, dosimetry and informatics The advantages and limitations of each technology in clinical settings are discussed, and recommendations on how to adopt the technologies are provided Critiques and improvement points are provided for researchers, in addition to suggestions on how to prepare quality assurance are provided as needed
This book covers various quantitative methods for preprocessing and analyzing human EEG signals. It presents a holistic approach to quantitative EEG from its neurological basis to simultaneous EEG and fMRI studies. Equal emphasis is given to major mathematical and statistical theories and computational techniques that have been in use in qEEG and their applications on clinical and laboratory experimental EEG. The book is compact and self-contained, requiring no background in EEG processing or acquisition and quantitative techniques.
Since the discovery of the x-ray over 125 years ago, scientists and medical professionals alike have harnessed the power of the atom to heal and protect. This book brings together an all-star cast of high-profile and award-winning scholars, introducing the general readership to an often unnoticed yet societally vital profession - medical physics. This collection of personal short stories offers an informal, behind-the-scenes glimpse into the lives of these esteemed professionals, encapsulating their transformative "aha" moments within a whimsical hodgepodge of instructive and inspiring anecdotes. They even pass on words of wisdom discovered from their diverse experiences throughout the academic, clinical, and commercial worlds. The wealth of information packed into these vignettes runs the gamut from practical career advice to lighthearted tales of humorous misadventure, providing a tremendous overview of the breadth and depth of medical physics as a career and discipline while imparting sage advice that extends well beyond the field. In his Foreword to this book Rafael Grossi, Director General of the International Atomic Energy Agency, provides his strong endorsement of the life-saving work carried out by medical physicists and the profession as a whole. From the general public to the budding student in search of career guidance, as well as young and seasoned practicing professionals, these thought-provoking, witty, and simply entertaining "untold stories" encourage the reader to reflect on and ponder the many enduring lessons born from unexpected life-turning events.
This book discusses multiple aspects of radiological and nuclear terrorism. Do you know what to do if there is a radiological or nuclear emergency in your city? These accidents are not common, but they have happened - and even though we have not seen an attack using these weapons, governments around the world are making plans for how to prevent them - and for how to respond if necessary. Whether you are an emergency responder, a medical caregiver, a public health official - even a member of the public wanting to know how to keep yourself and your loved ones safe - there is a need to understand how these weapons work, how radiation affects our health, how to stop an attack from taking place, how to respond appropriately in the event of an emergency, and much more. Unfortunately, the knowledge that is needed to accomplish all of this is lacking at all levels of society and government. In this book, Dr. Andrew Karam, an internationally respected expert in radiation safety and multiple aspects of radiological and nuclear emergencies, discusses how these weapons work and what they can do, how they can affect our health, how to keep yourself safe, and how to react appropriately whether you are a police officer investigating a suspect radiological weapon, a firefighter responding to a radiological or nuclear attack, a nurse or physician caring for potentially contaminated patients, or a governmental official trying to keep the public safe. To do this, he draws upon his extensive experience in the military, the several years he worked directly with emergency responders, his service on a number of advisory committees, and multiple trips overseas in the aftermath of the Fukushima accident and on behalf of the International Atomic Energy Agency, Interpol, and the Health Physics Society.
An innovative, three-dimensional x-ray imaging technique that enhances projection radiography by adding depth resolution, Tomosynthesis Imaging explores tomosynthesis, an emerging limited-angle tomographic imaging technology that is being considered for use in a range of clinical applications, and is currently being used for breast cancer screening and diagnosis. While conventional mammography has been very successful in reducing breast cancer mortality, it is not perfect. A major limitation of mammography is that the recorded image represents the superposition of complex three-dimensional structures in the breast onto a two-dimensional plane, making detection and diagnosis of breast cancer challenging. Tomosynthesis produces quasi-three-dimensional images that can significantly enhance the visualization of important diagnostic features. This book highlights the flexibility of tomosynthesis systems for new clinical applications, and provides a detailed discussion of the tomosynthesis acquisition process and the impact of physical factors. It explores such topics as acquisition parameters, system components, modeling, image reconstruction algorithms, and system evaluation. Provides in-depth coverage of system design considerations, as well as image reconstruction strategies Describes the current state of clinical applications of tomosynthesis, including imaging of the breast and chest, as well as its use in radiotherapy Illustrates the merits of tomosynthesis imaging and its potential clinical applications in imaging of the breast and chest, as well as for radiation therapy Divided into five sections, this text delves into the history and development of tomosynthesis. It introduces tomosynthesis imaging, discusses imaging system design considerations, and reviews image reconstruction algorithms that have been developed for tomosynthesis. It also describes system evaluation methodologies, emphasizes current clinical applications, and examines the future direction for tomosynthesis.
This book discusses fundamentally new biomedical imaging methods, such as holography, holographic and resonant interferometry, and speckle optics. It focuses on the development of holographic interference microscopy and its use in the study of phase objects such as nerve and muscle fibers subjected to the influence of laser radiation, magnetic fields, and hyperbaric conditions. The book shows how the myelin sheath and even the axon itself exhibit waveguide properties, enabling a fresh new look at the mechanisms of information transmission in the human body. The book presents theoretically and experimentally tested holographic and speckle-optical methods and devices used for investigating complex, diffusely scattering surfaces such as skin and muscle tissue. Additionally, it gives broad discussion of the authors' own original fundamental and applied research dedicated to helping physicians introduce new contact-less methods of diagnosis and treatment of diseases of the cardiovascular and neuromuscular systems into medical practice. The book is aimed at a broad spectrum of scientific specialists in the fields of speckle optics, holography, laser physics, morphology and cytochemistry, as well as medical professionals such as physiologists, neuropathologists, neurosurgeons, cardiologists and dentists.
Computational Biomechanics for Medicine: Solid and fluid mechanics for the benefit of patients contributions and papers from the MICCAI Computational Biomechanics for Medicine Workshop help in conjunction with Medical Image Computing and Computer Assisted Intervention conference (MICCAI 2019) in Shenzhen, China. The content is dedicated to research in the field of methods and applications of computational biomechanics to medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, analysis of injury mechanisms, implant and prostheses design, as well as artificial organ design and medical robotics. These proceedings appeal to researchers, students and professionals in the field.
This third edition provides 2900 multiple choice questions on human anatomy and physiology, and some biophysical science, separated into 20 chapters and 68 categories. In addition, there are 64 essay topics. The answer to each question is accompanied by an explanation. Each chapter has an introduction to set the scene for the questions to come. However, not all possible information is provided within these Introductions, so an Anatomy and Physiology textbook is an indispensable aid to understanding the answers. The textbook offers a more holistic approach to the subjects of anatomy and physiology by also including biomechanics, biophysics and biochemistry. The questions have been used in end-of-semester examinations for undergraduate anatomy and physiology courses, and as such, reflect the focus of these particular courses and are pitched at this level to challenge students that are beginning their training in anatomy and physiology. The question and answer combinations are intended for use by teachers, to select questions for their next examinations, and by students, when studying for an upcoming test. Students enrolled in the courses for which these questions were written include nursing, midwifery, paramedic, physiotherapy, occupational therapy, nutrition and dietetics, health sciences, exercise science, and students taking an anatomy and physiology course as an elective. |
You may like...
Industrial Engineering in Systems Design…
Brian Peacock, Adedeji B. Badiru
Hardcover
R3,500
Discovery Miles 35 000
The Iron Pnictide Superconductors - An…
Ferdinando Mancini, Roberta Citro
Hardcover
R3,580
Discovery Miles 35 800
Design of Feedback Control Systems
Raymond T. Stefani, Bahram Shahian, …
Hardcover
R6,540
Discovery Miles 65 400
|