Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Applied physics & special topics > Medical physics
Providing the most comprehensive, up-to-date coverage of this exciting biomedical field, Handbook of Photomedicine gathers together a large team of international experts to give you a complete account of the application of light in healthcare and medical science. The book progresses logically from the history and fundamentals of photomedicine to diverse therapeutic applications of light, known collectively as phototherapies. It facilitates your understanding of human diseases caused by light, the rationale for photoprotection, and major applications of phototherapy in clinical practice. The handbook begins with a series of historical vignettes of pioneers from the last two centuries. It also presents the fundamentals of physics and biology as applied to photomedicine. It next examines conditions and diseases caused by light, including skin cancer, dermatoses, and immunosuppression. The remainder of the book focuses on the most important clinical therapeutic applications of different kinds of light that vary in both wavelength and intensity. The book discusses ultraviolet phototherapy for skin diseases and infections and presents the basic science of photodynamic therapy and its use in cancer therapy and other medical specialties. It then covers mechanistic studies and clinical applications of low-level laser (light) therapy as well as the use of high power or surgical laser therapy in specialties, such as dentistry and dermatology. The book concludes with a collection of miscellaneous types of phototherapy.
Choice Recommended Title, April 2021 Bioimaging: Imaging by Light and Electromagnetics in Medicine and Biology explores new horizons in biomedical imaging and sensing technologies, from the molecular level to the human brain. It explores the most up-to-date information on new medical imaging techniques, such as the detection and imaging of cancer and brain diseases. This book also provides new tools for brain research and cognitive neurosciences based on new imaging techniques. Edited by Professor Shoogo Ueno, who has been leading the field of biomedical imaging for 40 years, it is an ideal reference book for graduate and undergraduate students and researchers in medicine and medical physics who are looking for an authoritative treatise on this expanding discipline of imaging and sensing in medicine and biology. Features: Provides step-by-step explanations of biochemical and physical principles in biomedical imaging Covers state-of-the art equipment and cutting-edge methodologies used in biomedical imaging Serves a broad spectrum of readers due to the interdisciplinary topic and approach Shoogo Ueno, Ph.D, is a professor emeritus of the University of Tokyo, Tokyo, Japan. His research interests include biomedical imaging and bioelectromagnetics, particularly in brain mapping and neuroimaging, transcranial magnetic stimulation (TMS), and magnetic resonance imaging (MRI). He was the President of the Bioelectromagnetics Society, BEMS (2003-2004) and the Chairman of the Commission K on Electromagnetics in Biology and Medicine of the International Union of Radio Science, URSI (2000-2003). He was named the IEEE Magnetics Society Distinguished Lecturer during 2010 and received the d'Arsonval Medal from the Bioelectromagnetics Society in 2010.
The need for qualified specialists to work with and apply sophisticated technology in contemporary medicine is rapidly growing. Professional bodies predict that meeting the needs of healthcare globally will require almost tripling the number of Medical Physicists by 2035. Similar challenges exist in the constantly growing profession of Medical Engineering. They can be solved most efficiently and effectively with the tools of e-Learning, and a free and open-source Virtual Learning Environment (VLE) platform such as Moodle is a welcome solution. The Moodle VLE platform is a free, open source learning management system that is the most popular choice for higher educational institutions worldwide. However, the best practices of the Moodle system are still unknown to many. This practical guide provides educators, programme administrators, and programme directors with a condensed guide to Moodle and step-by-step instructions on how to create a single course or an entire educational programme. It also discusses cost-effective ways to apply e-Learning in an educational institution. This guide is accessible to all professionals, even those without specialist IT skills, and will be helpful to educators of all levels in Medical Physics and Engineering, as well as in other medical and medical-related specialties or disciplines with a strong imaging component. Features: Provides step-by-step instructions of how to build a course/module for Higher Education on Moodle Gives practical solutions to implementing e-Learning in Medical Physics and Engineering Explores useful tips and tricks for best practice
Discover the Most Advanced Technologies in Biomagnetics Co-edited by Professor Ueno, a leader in the biomagnetics field for over 40 years, Biomagnetics: Principles and Applications of Biomagnetic Stimulation and Imaging explains the physical principles of biomagnetic stimulation and imaging and explores applications of the latest techniques in neuroscience, clinical medicine, and healthcare. The book shows you how the techniques are used in hospitals and why they are so promising. A brief overview of recent research trends in biomagnetics provides you with an up-to-date, informative guide to explore further in this field. The book focuses on three important areas: Magnetic nerve stimulation and transcranial magnetic stimulation Biomagnetic measurements and imaging of the human brain by advanced technologies of magnetoencephalography and MRI Biomagnetic approaches to potential treatments of cancers, pains, and other neurological and psychiatric diseases, such as Alzheimer's disease and depression These core areas of the book were developed from the editors' prestigious graduate-level courses in biomedical engineering. The text also discusses biomagnetic approaches to advanced medicine, including regenerative and rehabilitation medicine.
From first principles to current computer applications, Monte Carlo Calculations in Nuclear Medicine, Second Edition: Applications in Diagnostic Imaging covers the applications of Monte Carlo calculations in nuclear medicine and critically reviews them from a diagnostic perspective. Like the first edition, this book explains the Monte Carlo method and the principles behind SPECT and PET imaging, introduces the reader to some Monte Carlo software currently in use, and gives the reader a detailed idea of some possible applications of Monte Carlo in current research in SPECT and PET. New chapters in this edition cover codes and applications in pre-clinical PET and SPECT. The book explains how Monte Carlo methods and software packages can be applied to evaluate scatter in SPECT and PET imaging, collimation, and image deterioration. A guide for researchers and students developing methods to improve image resolution, it also demonstrates how Monte Carlo techniques can be used to simulate complex imaging systems.
Understand Quantitative Radiobiology from a Radiation Biophysics Perspective In the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses. Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer Treatments The book compiles radiation mechanism information from biophysical publications of the past 50 years, addressing how ionizing radiation produces the killing of stem cells in human tumors. It presents several physical and chemical parameters that can modulate the radiation response of clonogenic cells in tumors. The authors describe the use of the LQ model in basic radiation mechanism studies with cells of relatively homogeneous radiation response and then extend the model to the fitting of survival data generated with heterogeneous cell populations (tumors). They briefly discuss how to use the LQ model for predicting tumor (local) control probability (TCP) and normal tissue complication probability (NTCP). The book also examines potential molecular targets related to alpha- and beta-inactivation and gives suggestions for further molecular characterizations of these two independent processes. Develop Efficacious, Patient-Friendly Treatments at Reduced Costs Focusing on quantitative radiobiology in LQ formulation, this book assists medical physicists and radiation oncologists in identifying improved cancer treatments. It also encourages investigators to translate potentially improved radiotherapy schedules based on TCP and NTCP modeling into actual patient benefit.
Experienced Guidance on the Technical Issues of Decommissioning ProjectsWritten by one of the original MARSSIM authors, Decommissioning Health Physics: A Handbook for MARSSIM Users, Second Edition is the only book to incorporate all of the requisite technical aspects of planning and executing radiological surveys in support of decommissioning. Extensively revised and updated, it covers survey instrumentation, detection sensitivity, statistics, dose modeling, survey procedures, and release criteria. New to the Second Edition Chapter on hot spot assessment that recognizes appropriate dosimetric significance of hot spots when designing surveys and includes a new approach for establishing hot spot limits Chapter on the clearance or release of materials, highlighting aspects of the MARSAME manual Revised chapter on characterization survey design to reflect guidance in ANSI N13.59 on the value of data quality objectives (DQOs) Updated regulations and guidance documents throughout Updated survey instrumentation used to support decontamination and decommissioning (D&D) surveys, including expanded coverage of in situ gamma spectrometers Revised statistics chapter that includes an introduction to Bayesian statistics and additional double sampling and ranked set sampling statistical approaches More case studies and examples throughout Implement the Surveys Effectively and Avoid Common PitfallsWith more than 20 years of experience as a practitioner in the decommissioning survey field, author Eric W. Abelquist prepares you for the technical challenges associated with planning and executing MARSSIM surveys. He discusses the application of statistics for survey design and data reduction and addresses the selection of survey instrumentation and detection sensitivity. He presents final status survey
Choice Recommended Title, January 2021 This book, written by authors with more than a decade of experience in the design and development of artificial intelligence (AI) systems in medical imaging, will guide readers in the understanding of one of the most exciting fields today. After an introductory description of classical machine learning techniques, the fundamentals of deep learning are explained in a simple yet comprehensive manner. The book then proceeds with a historical perspective of how medical AI developed in time, detailing which applications triumphed and which failed, from the era of computer aided detection systems on to the current cutting-edge applications in deep learning today, which are starting to exhibit on-par performance with clinical experts. In the last section, the book offers a view on the complexity of the validation of artificial intelligence applications for commercial use, describing the recently introduced concept of software as a medical device, as well as good practices and relevant considerations for training and testing machine learning systems for medical use. Open problematics on the validation for public use of systems which by nature continuously evolve through new data is also explored. The book will be of interest to graduate students in medical physics, biomedical engineering and computer science, in addition to researchers and medical professionals operating in the medical imaging domain, who wish to better understand these technologies and the future of the field. Features: An accessible yet detailed overview of the field Explores a hot and growing topic Provides an interdisciplinary perspective
This volume contains the Proceedings of the NATO Advanced Research Workshop (ARW) and Emil-Warburg-Symposium (EWS) "Nonlinear Coherent Structures in Phy sics and Biology" held at the University of Bayreuth from June 1 -4, 1993. Director of the ARW was K. H. Spatschek, while F.G. Mertens acted as the co-director, host, and organizer of the EWS. The other members of the scientific organizing committee were A.R. Bishop (Los Alamos), J.C. Eilbeck (Edinburgh), and M. Remoissenet (Dijon). This was the eighth meeting in a series of interdisciplinary workshops founded by our French colleagues who had organized all the previous workshops, e.g. 1989 in Montpel lier and 1991 in Dijon. We were asked to organize the meeting this time in Germany. Of course, we wanted to keep the character defined by the previous meetings, which were always characterized by an open and friendly atmosphere, being not too large in quantity, but high in quality. This time altogether 103 participants attended the workshop. During the past years most of the participants met several times and discussed problems connected with the generation of nonlinear coherent structures in physics and biology."
Achieving Quality in Brachytherapy addresses the main issues that often prevent correct delivery of brachytherapy treatment. The book explains how to set up a functional quality assurance program in brachytherapy and covers all the steps needed to undertake particular treatment plans, from the initial planning required to the detailed specification. It highlights the importance of planning as a means of controlling and dealing with errors during the treatment process and advises on what to check and how to check during treatment to ensure effective quality assurance. This comprehensive reference is ideal for professionals working in brachytherapy, physics, and radiation oncology, and serves as an introduction for trainees with an undergraduate degree in medical physics or clinical radiation oncology.
Readable and concise - focusing on the common diseases that medical students most frequently encounter Fully revised and updated - including up to date information on the latest imaging techniques including spectral CT, liver elastography, new and emerging PET techniques, multiparametric imaging and the role of AI Heavily illustrated - over 450 high-quality photographs, many new to this edition including colour images, are essential to support this visual subject Highly structured and accessible format - plentiful use of tables and lists, and introduction of new summary boxes, all ideal for study and exam preparation Companion website - image library including normal anatomy, clinical cases and MCQs for self-assessment, RADS reporting systems and detailed staging systems for common tumours relevant to each section; visit www.routledge.com/cw/hacking Drawing on the extensive clinical and teaching experience of its respected author team, the fifth edition of Imaging for Students gives students and junior doctors everything they need to understand the advantages, disadvantages, and possible side effects of the imaging modalities available, and how to apply them appropriately in clinical practice.
Choice Recommended Title, January 2020 Providing a vital resource in tune with the massive advancements in accelerator technologies that have taken place over the past 50 years, Accelerator Radiation Physics for Personnel and Environmental Protection is a comprehensive reference for accelerator designers, operators, managers, health and safety staff, and governmental regulators. Up-to-date with the latest developments in the field, it allows readers to effectively work together to ensure radiation safety for workers, to protect the environment, and adhere to all applicable standards and regulations. This book will also be of interest to graduate and advanced undergraduate students in physics and engineering who are studying accelerator physics. Features: Explores accelerator radiation physics and the latest results and research in a comprehensive single volume, fulfilling a need in the market for an up-to-date book on this topic Contains problems designed to enhance learning Addresses undergraduates with a background in math and/or science
On-treatment verification imaging has developed rapidly in recent years and is now at the heart of image-guided radiation therapy (IGRT) and all aspects of radiotherapy planning and treatment delivery. This is the first book dedicated to just this important topic, which is written in an accessible manner for undergraduate and graduate therapeutic radiography (radiation therapist) students and trainee medical physicists and clinicians. The later sections of the book will also help established medical physicists, therapeutic radiographers, and radiation therapists familiarise themselves with developing and cutting-edge techniques in IGRT. Features: Clinically focused and internationally applicable; covering a wide range of topics related to on-treatment verification imaging for the study of IGRT Accompanied by a library of electronic teaching and assessment resources for further learning and understanding Authored by experts in the field with over 18 years' experience of pioneering the original forms of on-treatment verification imaging in radiotherapy (electronic portal imaging) in clinical practice, as well as substantial experience of teaching the techniques to trainees
This book explores the physics of CT dosimetry and provides practical guidance on best practice for medical researchers and practitioners. A rigorous description of the basic physics of CT dosimetry is presented and illustrates flaws of the current methodology. It also contains helpful (and rigorous) shortcuts to reduce the measurement workload for medical physicists. The mathematical rigor is accompanied by easily-understood physical explanations and numerous illustrative figures. Features: Authored by a recognised expert in the field and award-winning teacher Includes derivations for tube current modulation and variable pitch as well as stationary table techniques Explores abnormalities present in dose-tracking software based on CTDI and presents methods to correct them
The second in a three-volume set exploring Problems and Solutions in Medical Physics, this volume explores common questions and their solutions in Nuclear Medicine. This invaluable study guide should be used in conjunction with other key textbooks in the field to provide additional learning opportunities. Topics include radioactivity and nuclear transformation, radionuclide production and radiopharmaceuticals, non-imaging detectors and counters, instrumentation for gamma imaging, SPECT and PET/CT, imaging techniques, radionuclide therapy, internal radiation dosimetry, and quality control and radiation protection in nuclear medicine. Each chapter provides examples, notes, and references for further reading to enhance understanding. Features: Consolidates concepts and assists in the understanding and applications of theoretical concepts in medical physics Assists lecturers and instructors in setting assignments and tests Suitable as a revision tool for postgraduate students sitting medical physics, oncology, and radiology sciences examinations
Big Data in Radiation Oncology gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. While basic principles and key analytical and processing techniques are introduced in the early chapters, the rest of the book turns to clinical applications, in particular for cancer registries, informatics, radiomics, radiogenomics, patient safety and quality of care, patient-reported outcomes, comparative effectiveness, treatment planning, and clinical decision-making. More features of the book are: Offers the first focused treatment of the role of big data in the clinic and its impact on radiation therapy. Covers applications in cancer registry, radiomics, patient safety, quality of care, treatment planning, decision making, and other key areas. Discusses the fundamental principles and techniques for processing and analysis of big data. Address the use of big data in cancer prevention, detection, prognosis, and management. Provides practical guidance on implementation for clinicians and other stakeholders. Dr. Jun Deng is a professor at the Department of Therapeutic Radiology of Yale University School of Medicine and an ABR board certified medical physicist at Yale-New Haven Hospital. He has received numerous honors and awards such as Fellow of Institute of Physics in 2004, AAPM Medical Physics Travel Grant in 2008, ASTRO IGRT Symposium Travel Grant in 2009, AAPM-IPEM Medical Physics Travel Grant in 2011, and Fellow of AAPM in 2013. Lei Xing, Ph.D., is the Jacob Haimson Professor of Medical Physics and Director of Medical Physics Division of Radiation Oncology Department at Stanford University. His research has been focused on inverse treatment planning, tomographic image reconstruction, CT, optical and PET imaging instrumentations, image guided interventions, nanomedicine, and applications of molecular imaging in radiation oncology. Dr. Xing is on the editorial boards of a number of journals in radiation physics and medical imaging, and is recipient of numerous awards, including the American Cancer Society Research Scholar Award, The Whitaker Foundation Grant Award, and a Max Planck Institute Fellowship.
Bone is a complex biological material that consists of both an inorganic and organic phase, which undergoes continuous dynamic biological processes within the body. This complex structure and the need to acquire accurate data have resulted in a wide variety of methods applied in the physical analysis of bone in vivo and in vitro. Each method has its own strengths and applications depending on the information sought by the clinician or researcher. The Physical Measurement of Bone provides a detailed description of all the major methods of bone analysis, including brief comments on clinical evaluation. The physics of each method are introduced as well as a summary of practical procedures. The book is essential reading for practicing medical physicists and technicians who need to know about the many methods of bone analysis open to them, and, more importantly, the wide coverage provides a good introductory framework for students of medical physics and biomedical engineering.
External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution-adapting delivery to natural movement-a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed treatment of online interventional techniques for motion compensation radiotherapy. This authoritative book discusses: Each of the contributing elements of a motion-adaptive system, including target detection and tracking, beam adaptation, and patient realignment Treatment planning issues that arise when the patient and internal target are mobile Integrated motion-adaptive systems in clinical use or at advanced stages of development System control functions essential to any therapy device operating in a near-autonomous manner with limited human interaction Necessary motion-detection methodology, repositioning techniques, and approaches to interpreting and responding to target movement data in real time Medical therapy with external beams of radiation began as a two-dimensional technology in a three-dimensional world. However, in all but a limited number of scenarios, movement introduces the fourth dimension of time to the treatment problem. Motion-adaptive radiation therapy represents a truly four-dimensional solution to an inherently four-dimensional problem. From these chapters, readers will gain not only an understanding of the technical aspects and capabilities of motion adaptation but also practical clinical insights into planning and carrying out various types of motion-adaptive radiotherapy treatment.
Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it describes the use of radiopharmaceuticals in molecular imaging, clinical, and research studies. The text then covers modern radiation detectors and measuring methods, including those used in nuclear imaging, as well as numerous imaging methodologies and models, such as two- and three-dimensional image reconstruction algorithms, data processing sequences, new nuclear oncology techniques, and physiological models of the central nervous system. It also introduces biological systems theory, nuclear medicine methods as systems theory procedures, and aspects of kinetic modeling. The final chapter explores dosimetry and the biological effects of ionizing radiation. With many new developments occurring in nuclear medicine, it is important to understand how advanced approaches are being used in emerging applications. Offering invaluable insight into this growth, Nuclear Medicine Physics provides in-depth descriptions of new radiolabeled biological drugs, new cell labeling techniques, new technical concepts in radiation detection, improvements in instrumentation, and much more.
This book contains contributions from computational biomechanics specialists who present and exchange opinions on the opportunities for applying their techniques to computer-integrated medicine, including computer-aided surgery and diagnostic systems. Computational Biomechanics for Medicine collects peer-reviewed chapters from the annual Computational Biomechanics for Medicine Workshop, in conjunction with the Medical Image Computing and Computer Assisted Intervention [MICCAI] Society conference. The works are dedicated to research in the field of methods and applications of computational biomechanics to medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease diagnosis and prognosis, analysis of injury mechanisms, implant and prosthesis design, artificial organ design, and medical robotics. These chapters will appeal to a wide range of researchers and students within the fields of engineering and medicine, as well as those working in computational science. |
You may like...
Injecting Creative Thinking into…
Barry P. McMahon, Paul Coughlan
Paperback
R1,367
Discovery Miles 13 670
Novel Optical Endoscopes for Early…
Dale Jonathan Waterhouse
Hardcover
R2,789
Discovery Miles 27 890
Radiation and Detectors - Introduction…
Lucio Cerrito
Hardcover
ICTMI 2017 - Proceedings of the…
Balazs Gulyas, Parasuraman Padmanabhan, …
Hardcover
R5,440
Discovery Miles 54 400
Supramolecular Chemistry - Proceedings…
Vincenzo Balzani, L.De Cola
Hardcover
R2,441
Discovery Miles 24 410
Computational Biomechanics for Medicine…
Karol Miller, Adam Wittek, …
Hardcover
R2,794
Discovery Miles 27 940
Advances in Nanomaterials for Drug…
Mahdi Karimi, Maryam Rad Mansouri, …
Hardcover
R1,564
Discovery Miles 15 640
|