![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Medical physics
This book mainly focuses on key aspects of biomembranes that have emerged over the past 15 years. It covers static and dynamic descriptions, as well as modeling for membrane organization and shape at the local and global (at the cell level) scale. It also discusses several new developments in non-equilibrium aspects that have not yet been covered elsewhere. Biological membranes are the seat of interactions between cells and the rest of the world, and internally, they are at the core of complex dynamic reorganizations and chemical reactions. Despite the long tradition of membrane research in biophysics, the physics of cell membranes as well as of biomimetic or synthetic membranes is a rapidly developing field. Though successful books have already been published on this topic over the past decades, none include the most recent advances. Additionally, in this domain, the traditional distinction between biological and physical approaches tends to blur. This book gathers the most recent advances in this area, and will benefit biologists and physicists alike.
Learn about the many biological and medical applications of ultrashort laser pulses. The authors highlight and explain how the briefness of these laser pulses permits the tracing of even the fastest processes in photo-active bio-systems. They also present a variety of applications that rely on the high peak intensity of ultrashort laser pulses. Easy-to-follow examples cover non-linear imaging techniques, optical tomography, and laser surgery.
This book presents the latest research findings and reviews in the field of medical imaging technology, covering ultrasound diagnostics approaches for detecting osteoarthritis, breast carcinoma and cardiovascular conditions, image guided biopsy and segmentation techniques for detecting lung cancer, image fusion, and simulating fluid flows for cardiovascular applications. It offers a useful guide for students, lecturers and professional researchers in the fields of biomedical engineering and image processing.
The International Symposium on Biological Effects of Magnetic and Electrom- netic Fields was held from September 3-4, 1993 at Kyushu University in Fukuoka . Japan . Originally, it was only intended to be an informal gathering of many scientists who had accepted my invitation to visit Kyushu University after the XXIVth General Assembly of the International Union of Radio Science (URSI), held in Kyoto prior to our symposium . However, since so many distinguished scientists were able to come, it was decided that a more formal symposium would be possible . It was a very productive symposium and, as a result, many of the guests consented that it would be a good idea to gather all the information put forth at the meeting and have it published. In addition, although they were unfortunately unable to attend the symposium . many other distinguished scientists had also expressed their wish to contribute to this effort and, in so doing. help to increase understanding in this, as yet, relatively immature field of science . The question of both positive and negative effects of magnetic and electromagnetic fields on biological systems has become more and more important in our world today as they .
This volume covers the latest developments in optical imaging of the brain which is becoming an increasingly important functional neuroimaging method. Optical intrinsic signals offer unrivaled temporal and spatial resolution of functional measurements of the exposed brain cortex in animals and humans. Near-infrared spectroscopy and imaging ap proaches permit the noninvasive functional assessment of the human brain at bedside. Main advantages of these optical techniques are the biochemical specificity of the meas urements and the potential of measuring correlates of intracellular and intravascular oxy genation simultaneously. Recent data indicate that one may also measure a more direct correlate of neuronal activity associated with changes in light scattering. In this volume, recent technical progress of the optical method is covered as well as the physiological basis of the measurements. In simultaneous studies, near-infrared spec troscopy measurements are directly compared to other functional methods, especially PET and fMRI and examples are given for new applications of the NIRS-method. Based on re sults obtained with optical methods and other functional techniques the latest in our under standing of the coupling of neuronal activity and cerebral blood flow response is reviewed. This is an important basis for a better understanding of all functional neuroi maging methods which rely on neurovascular coupling such as PET, SPET and fMRI. Fi nally the optical method is put into the perspective of presently available functional neuroimaging methods including fMRI, PET, MEG and EEG."
This text discusses mathematical modelling, analysis and control of the immune system and disease dynamics. The purpose of the book is the practical application of mathematics to immunology and medicine in order to establish a basis for more effective treatment, to provide a tutorial systematic description of how the immune system controls diseases and to present several significant examples such as malignant tumour dynamics and control, and viral hepatitis. The book is multidisciplinary in content, with the intended readers including biomathematicians, biologists and physicists. It combines immunological principles, mathematical models, computer simulations and methods of analysis.
A "brain defibrillator" may be closer than we think. An epileptic seizure involves a paroxysmal change in the activity of millions of neurons. Feedback control of seizures would require an implantable device that could predict seizure occurrence and then deliver a stimulus to abort it. To examine the feasibility of building such a device, this text brings together experts in epilepsy, bio-engineering, and dynamical systems theory. Topics include the development of epileptic systems, seizure prediction, neural synchronization, wave phenomena in excitable media, and the control of complex neural dynamics using brief electrical stimuli.
The IUTAM Symposium on Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries was held on 26-30 March, 2001, at the University of Warwick. As this was the first scientific meeting of its kind we considered it important to mark the occasion by producing a book. Accordingly, at the end of the Symposium the Scientific Committee met to discuss the most appropriate format for the book. We wished to avoid the format of the conventional conference book consisting of a large number of short articles of varying quality. It was agreed that instead we should produce a limited number of rigorously refereed and edited articles by selected participants who would aim to sum up the state of the art in their particular research area. The outcome is the present book. Peter W. Ca rpenter, Warwick Timothy J. Pedley, Cambridge May, 2002. VB SCIENTIFIC COMMITTEE Co-Chair: P.W. Carpenter, Engineering, Warwiek, UK Co-Chair: TJ. Pedley, DAMTP, Cambridge, UK V.V. Babenko, Hydromechanics, Kiev, Ukraine R. Bannasch, Bionik & Evolutionstechnik, TU Berlin, Germany C.D. Bertram, Biomedical Engineering, New South Wales, Australia M. Gad-el-Hak, Aerospace & Mechanical Engineering, Notre Dame, USA J.B. Grotberg, Biomedical Engineering, Michigan, USA. R.D. Kamm, Mechanical Engineering, MIT, USA Y. Matsuzaki, Aerospace Engineering, N agoya, Japan P.K. Sen, Applied Mechanics, IIT Delhi, India L. van Wijngaarden, Twente, Netherlands K-S. Yeo, Mechanical Engineering, NU Singapore.
Many books cover the determination of rate constants under different experimental conditions and different chemical composition of the reaction mixture in their formal treatment of thermal kinetics. However, most textbooks are limited to simple mechanisms. In contrast, analogous treatment of photochemical reactions is limited to the publication of special reactions and investigations. Therefore, this book is aimed at providing an overall description of formal photokinetics covering a wider scope than the usual books on kinetics. This volume attempts to provide a concise treatment of both thermo- and photochemical reactions by means of generalised differential equations, their set-up in matrix notation, and their solution by a formalism using numerical integration. At a first glance this approach might be surprising. However, apart from the argument that the didactics of thermal reactions are easier to handle than those of kinetics, the book provides additional reasons in support of this approach. Therefore, the formalism derived allows the evaluation of photochemical reactions, which are superimposed thermal reactions taking into account that the amount of light absorbed varies during the reaction. Because of this, any approximation, either by using total absorbance or negligible absorbance, will cause considerable errors even for simple reactions. The approach chosen to transform the axis of the radiation time into a new variable that includes the photokinetic factor proves that formal kinetics can be applied to thermal and photochemical reactions as well, and even allows the handling of solutions that cannot be homogenised or solid samples in which the concentration varies locally.By using this approach to introduce partial photochemical quantum yields even complex mechanisms can be determined quantitatively. A large number of examples for different mechanisms and an introduction to many spectroscopic and chromatographic methods suitable for photokinetic analyses are provided to enable the reader to carry out a step-by-step evaluation of his own measurements. To reduce the number of formula in some chapters an appendix has been included which contains a detailed description of the calculus of some essential examples. For the convenience of the reader the following has been included: - A large number of examples describing the use of formula - A detailed description of the procedure for applying photokinetics to complex consecutive photoreactions - An Internet address where the reader can find a tutorial for
this procedure: - A simple macro to help in programming his own evaluation procedure.
This book presents an overview of the current state of research on ultrashort electric field pulses of high intensity and their use in biology and medicine. It examines in detail the most recent and exciting advances in how nanosecond and picosecond electric pulse research has grown and expanded into new areas of biology and medicine. Further, the book specifically focuses on electric pulses in the time domain, on intracellular effects as opposed to plasma membrane electroporation, and highlights the biological and medical applications of these unique pulse effects. Since the authors were initial innovators exploring nanosecond and picosecond pulses, their unique perspectives foreshadowed directions the research took, expanding into new areas that they continue to investigate today.
The book sets out to inform a broad range of professionals working in medicine and healthcare about how creative thinking and design concepts can be used to innovate in providing an enhanced patient experience. It outlines these concepts as a primary means to identify, clarify and resolve some of the process improvement and enhancement challenges in healthcare delivery. It demonstrates by example how such challenges can be addressed, drawing on case examples from healthcare and other industries, and from the authors’ own experiences as innovators and educators. It emphasizes the value of learning in action. For the reader who already has a leaning towards novel approaches to addressing healthcare delivery challenges, it provides guidance on harnessing team inputs and engaging with a network of contributors. It is an ideal resource for all working in medicine and healthcare, from managers, nurses, doctors, administrators, executives, and allied health professionals to medical engineers, medical physicists, medical scientists and medical product developers. Features Provides a unique framework to conceptualise innovation in healthcare and medicine. Authored by an award-winning medical scientist and an established business school Professor who have proven track-records with innovation, in education settings and as entrepreneurs. Presents a clear interdisciplinary approach, complemented with practical case studies set in the context of the challenges facing healthcare delivery in the 21st century. Dr. Barry McMahon has a national and international reputation as an Academic Medical Physicist in the fields of novel physiological measurement and medical device innovation and design. He is the co- inventor of the Functional Lumen Imaging Probe (FLIP) technique later commercialised as EndoFLIP™. He was the Director of the Innovation Academy at Trinity College Dublin from 2012 to 2017. Since 2020 he is advising Children’s Health Ireland on innovation practice. In 2021, he retired as Chief Physicist/Clinical Engineer at Tallaght Hospital, Ireland and currently runs his own innovation-consulting group Electric Mindset Ltd. Dr. Paul Coughlan is Professor in Operations Management and Co-Director of Faculty at Trinity Business School, Trinity College Dublin. His research explores collaborative strategic improvement of operations through network action learning. He was the Director of the Innovation Academy at Trinity College Dublin from 2010 to 2012. He is a founding director of a research-based spin-out venture, Easy Hydro Ltd.
MINIATURE LASER SOURCE TECHNOLOGY: Properties of High Power Semiconductor Lasers (D.F. Welch). DiodePumped Miniature Solid State Lasers (R. Pratesi). LIGHTTISUE INTERACTIONS AND OPTICS OF TISSUES: Biophysical Bases of LaserTissue Interactions (J.L. Boulnois). Optical and Thermal Modeling of Tissues: Dosimetry (M.J.C. van Gemert et al.). DIAGNOSTIC TECHNIQUES: Holography in Medical Diagnostics (G. von Bally). Laser Reflectance Spectroscopy of tissue (B. Wilson et al.). Monitoring and Imaging of Tissue Blood Flow by Coherent Light Scattering (G.E. Nilsson et al.). Transillumination Imaging (P.C. Jackson et al.). THERAPEUTIC TECHNIQUES: Lamps: Ultraviolet Radiation Lamps for the Phototherapy of Psoriasis (B.L. Diffey). Phototherapy and Photochemotherapy of Psoriasis (T.B. Fitzpatrick). Light Therapy for Neonatal Jaundice (J.F. Ennever). The Hazards of Cosmetic Tanning with UVA Radiation (A.R. Young). Lasers: The Role of Neodymium Yttrium Aluminum Garnet (Nd: YAG) Laser in Medicine (H. Barr et al.). Diode Laser Photocoagulation in Opthamology (R. Brancato et al.). FUTURE DIRECTIONS: Initial Applications and Potential of Miniature Lasers in Medicine (R. Pratesi). Future Trends in Laser Medicine (J.A. Parrish). 8 additional articles. Index of Contributors. Subject Index.
This third edition provides 2900 multiple choice questions on human anatomy and physiology, and some biophysical science, separated into 20 chapters and 68 categories. In addition, there are 64 essay topics. The answer to each question is accompanied by an explanation. Each chapter has an introduction to set the scene for the questions to come. However, not all possible information is provided within these Introductions, so an Anatomy and Physiology textbook is an indispensable aid to understanding the answers. The textbook offers a more holistic approach to the subjects of anatomy and physiology by also including biomechanics, biophysics and biochemistry. The questions have been used in end-of-semester examinations for undergraduate anatomy and physiology courses, and as such, reflect the focus of these particular courses and are pitched at this level to challenge students that are beginning their training in anatomy and physiology. The question and answer combinations are intended for use by teachers, to select questions for their next examinations, and by students, when studying for an upcoming test. Students enrolled in the courses for which these questions were written include nursing, midwifery, paramedic, physiotherapy, occupational therapy, nutrition and dietetics, health sciences, exercise science, and students taking an anatomy and physiology course as an elective.
This book describes radionanomedicine as an integrated medicine using exogenous and endogenous This book describes radionanomedicine as an integrated approach that uses exogenous and endogenous nanomaterials for in vivo and human applications. It comprehensively explains radionanomedicine comprising nuclear and nanomedicine, demonstrating that it is more than radionanodrugs and that radionanomedicine also takes advantage of nuclear medicine using trace technology, in which miniscule amounts of materials and tracer kinetic elucidate in vivo biodistribution. It also discusses exogenous nanomaterials such as inorganic silica, iron oxide, upconversion nanoparticles and quantum dots or organic liposomes labelled with radioisotopes, and radionanomaterials used for targeted delivery and imaging for theranostic purposes. Further, it examines endogenous nanomaterials i.e. extracellular vesicles labelled with radioisotopes, known as radiolabelled extracellular vesicles, as well as positron emission tomography (PET) and single photon emission computed tomography (SPECT), which elucidate the biodistribution and potential for therapeutic success.
Image synthesis across and within medical imaging modalities is an active area of research with broad applications in radiology and radiation oncology. This book covers the principles and methods of medical image synthesis, along with state-of-the-art research. First, various traditional non-learning-based, traditional machine-learning-based, and recent deep-learning-based medical image synthesis methods are reviewed. Second, specific applications of different inter- and intra-modality image synthesis tasks and of synthetic image-aided segmentation and registration are introduced and summarized, listing and highlighting the proposed methods, study designs, and reported performances with the related clinical applications of representative studies. Third, the clinical usages of medical image synthesis, such as treatment planning and image-guided adaptive radiotherapy, are discussed. Last, the limitations and current challenges of various medical synthesis applications are explored, along with future trends and potential solutions to solve these difficulties. The benefits of medical image synthesis have sparked growing interest in a number of advanced clinical applications, such as magnetic resonance imaging (MRI)-only radiation therapy treatment planning and positron emission tomography (PET)/MRI scanning. This book will be a comprehensive and exciting resource for undergraduates, graduates, researchers, and practitioners.
A review of our current understanding of the physical phenomena associated with the flow of blood through the brain, applying these concepts to the physiological and medical aspects of cerebrovascular disease so as to be useful to both the scientist and the clinician. Specifically the book discusses the physical bases for the development of cerebrovascular disease and for its clinical consequences; specific current and possible future therapies; experimental, clinical, and computational techniques used to investigate cerebrovascular disease; blood dynamics and its role; imaging methods used in the diagnosis and management of cerebrovascular disease. Intended as a one- or two-semester course in biophysics, biomedical engineering or medical physics, this is also of interest to medical students and interns in neurology and cardiology, and provides a useful overview of current practice for researchers and clinicians.
Within the various aspects of life-science technologies medicine and information technology will change next millennium's quality-of-life fundamentally. Thanks to the rapid growth of telecommunication industry and the success and popularity of the internet the face of medicine will essentially change, because information technology is expected to play a major role in future health care systems. The conference MEDICOM 2000 is a discussion forum on fast and cost efficient patient-data exchange systems between doctors' offices, medical laboratories, telearchive services, health care insurances, highly specialized experts in hospitals etc. The conference brought together scientific, medical and application experts from university, clinical and commercial sites of both areas - medicine and communication - to stimulate synergy between these rapidly evolving future technologies. We would like to acknowledge all the parties who contributed to the success of the conference. Especially, we would like to thank Gisela Niedzwetzki and Waltraud Ott for secretarial support as well as Dirk Thomsen for web mastering. Additionally, we have to acknowledge the valuable support of Holger Dorle, Thomas Giese, Peter Just, Stefan Klockner, Heike Lahr and Kerstin Ltidtke-Buzug during the conference.
Early in 1990 a scientific committee was formed for the purpose of organizing a high-level scientific meeting on Future Directions of Nonlinear Dynamics in Physical and Biological Systems, in honor of Alwyn Scott's 60th birthday (December 25, 1991). As preparations for the meeting proceeded, they were met with an unusually broad-scale and high level of enthusiasm on the part of the international nonlinear science community, resulting in a participation by 168 scientists from 23 different countries in the conference, which was held July 23 to August 11992 at the Laboratory of Applied Mathematical Physics and the Center for Modelling, Nonlinear Dynamics and Irreversible Thermodynamics (MIDIT) of the Technical University of Denmark. During the meeting about 50 lectures and 100 posters were presented in 9 working days. The contributions to this present volume have been grouped into the following chapters: 1. Integrability, Solitons, and Coherent Structures 2. Nonlinear Evolution Equations and Diffusive Systems 3. Chaotic and Stochastic Dynamics 4. Classical and Quantum Lattices and Fields 5. Superconductivity and Superconducting Devices 6. Nonlinear Optics 7. Davydov Solitons and Biomolecular Dynamics 8. Biological Systems and Neurophysics. AI Scott has made early and fundamental contributions to many of these different areas of nonlinear science. They form an important subset of the total number of the papers and posters presented at the meeting. Other papers from the meeting are being published in a special issue of Physica D Nonlinear Phenomena.
All living matter is comprised of cells, small compartments isolated from the environment by a cell membrane and filled with concentrated solutions of various organic and inorganic compounds. Some organisms are single-cell, where all life functions are performed by that cell. Others have groups of cells, or entire organs, specializing in one particular function. The survival of the entire organism depends on all of its cells and organs fulfilling their roles.While the cells are studied by different sciences, they are seen differently by biologists, chemists, or physicists. Biologists concentrate their attention on cell structure and function. What does the cell consist of? Where are its organelles? What function does each organelle fulfil? From a chemists' point of view, a cell is a complex chemical reaction chamber where various molecules are synthesized or degraded. The main question is how these, sometimes very complicated chains of reactions are controlled. Finally, from a physics standpoint, one of the main questions is the physical movement of all these molecules between organelles within the cell, as well as their exchange with the extracellular medium. The aim of this book is to look into the basic physical phenomena occurring in cells. These physical transport processes facilitate chemical reactions in the cell and that in turn leads to the biological functions necessary for the cell to satisfy its role in the mother organism. Ultimately, the goals of every cell are to stay alive and to fulfil its function as a part of a larger organ or organism. This book is an inventory of physical transport processes occurring in cells while the second volume will be a closer look at how complex biological and physiological cell phenomena result from these very basic physical processes.
Sensors were developed to detect and quantify structures and functions of human body as well as to gather information from the environment in order to optimize the efficiency, cost-effectiveness and quality of healthcare services as well as to improve health and quality of life. This book offers an up-to-date overview of the concepts, modeling, technical and technological details and practical applications of different types of sensors. It also discusses the trends for the next generation of sensors and systems for healthcare settings. It is aimed at researchers and graduate students in the field of healthcare technologies, as well as academics and industry professionals involved in developing sensing systems for human body structures and functions, and for monitoring activities and health.
This book introduces readers to the principles of laser interaction with biological cells and tissues with varying degrees of organization. In addition to considering the problems of biomedical cell diagnostics, and modeling the scattering of laser irradiation of blood cells for biological structures (dermis, epidermis, vascular plexus), it presents an analytic theory based on solving the wave equation for the electromagnetic field. It discusses a range of mathematical modeling topics, including optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers; heating blood vessels using laser irradiation on the outer surface of the skin; and thermo-chemical denaturation of biological structures based on the example of human skin. In this second edition, a new electrodynamic model of the interaction of laser radiation with blood cells is presented for the structure of cells and the in vitro prediction of optical properties. The approach developed makes it possible to determine changes in cell size as well as modifications in their internal structures, such as transformation and polymorphism nucleus scattering, which is of interest for cytological studies. The new model is subsequently used to calculate the size distribution function of irregular-shape particles with a variety of forms and structures, which allows a cytological analysis of the observed deviations from normal cells.
This book, a selection of the papers presented at the 2nd World Congress for Electricity and Magnetism, provides state-of-the-art information on applications of electricity and electromagnetic fields on living organisms, especially man.
This book focuses on the processing, materials design, characterisation, and properties of polymer composites and nanocomposites for use as electromagnetic radiation shielding materials and to enhance radiation shielding capacity in order to meet the safety requirements for use in medical X-ray imaging facilities. It presents an in-depth analysis of materials synthesis methods such as melt-mixing, ion-implantation, solution casting and electrospinning. In addition, it measures the X-ray attenuation behaviour of fabricated composites and nanocomposites in four major types of X-ray equipment, namely general radiography, mammography, X-ray absorption spectroscopy and X-ray fluorescence spectroscopy units. Given its scope, the book will benefit researchers, engineers, scientists and practitioners in the fields of medical imaging, diagnostic radiology and radiation therapy.
"Light is a Messenger" is the first biography of William Lawrence Bragg, who was only 25 when he won the 1915 Nobel Prize in Physics - the youngest person ever to win a Nobel Prize. It describes how Bragg discovered the use of X-rays to determine the arrangement of atoms in crystals and his pivotal role in developing this technique to the point that structures of the most complex molecules known to Man - the proteins and nucleic acids - could be solved. Although Bragg's Nobel Prize was for physics, his research profoundly affected chemistry and the new field of molecular biology, of which he became a founding figure. This book explains how these revolutionary scientific events occurred while Bragg struggled to emerge from the shadow of his father, Sir William Bragg, and amidst a career-long rivalry with the brilliant American chemist, Linus Pauling. |
![]() ![]() You may like...
Interdisciplinary and Practical…
Luisa Cagica Carvalho, Nuno Teixeira, …
Hardcover
R5,784
Discovery Miles 57 840
Remembering and Forgetting in the Age of…
Michelle D. Miller
Hardcover
R2,892
Discovery Miles 28 920
Occupationally-Directed Education…
Marius Meyer, Mark Orpen, …
Paperback
Optimizing Instructional Design Methods…
Yianna Vovides, Linda Rafaela Lemus
Hardcover
R4,721
Discovery Miles 47 210
|