![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment > Microscopy
Work with individual atoms and molecules aims to demonstrate
that miniaturized electronic, optical, magnetic, and mechanical
devices can operate ultimately even at the level of a single atom
or molecule. As such, atomic and molecular manipulation has played
an emblematic role in the development of the field of nanoscience.
New methods based on the use of the scanning tunnelling microscope
(STM) have been developed to characterize and manipulate all the
degrees of freedom of individual atoms and molecules with an
unprecedented precision. In the meantime, new concepts have emerged
to design molecules and substrates having specific optical,
mechanical and electronic functions, thus opening the way to the
fabrication of real nano-machines. Manipulation of individual atoms
and molecules has also opened up completely new areas of research
and knowledge, raising fundamental questions of "Optics at the
atomic scale," "Mechanics at the atomic scale," Electronics at the
atomic scale," "Quantum physics at the atomic scale," and
"Chemistry at the atomic scale." This book aims to illustrate the
main aspects of this ongoing scientific adventure and to anticipate
the major challenges for the future in "Atomic and molecular
manipulation" from fundamental knowledge to the fabrication of
atomic-scale devices.
This is the first book to bring together both the basic theory and proven process engineering practice of AFM. It is presented in a way that is accessible and valuable to practising engineers as well as to those who are improving their AFM skills and knowledge, and to researchers who are developing new products and solutions using AFM. The book takes a rigorous and practical approach that ensures it
is directly applicable to process engineering problems.
Fundamentals and techniques are concisely described, while specific
benefits for process engineering are clearly defined and
illustrated. Key content includes: particle-particle, and
particle-bubble interactions; characterization of membrane
surfaces; the development of fouling resistant membranes; nanoscale
pharmaceutical analysis; nanoengineering for cellular sensing;
polymers on surfaces; micro and nanoscale rheometry.
The Beginnings of Electron Microscopy - Part 2, Volume 221 in the Advances in Imaging and Electron Physics series, highlights new advances in the field, with this new volume presenting interesting chapters on Recollections from the Early Years: Canada-USA, My Recollection of the Early History of Our Work on Electron Optics and the Electron Microscope, Walter Hoppe (1917-1986), Reminiscences of the Development of Electron Optics and Electron Microscope Instrumentation in Japan, Early Electron Microscopy in The Netherlands, L. L. Marton, 1901-1979, The Invention of the Electron Fresnel Interference Biprism, The Development of the Scanning Electron Microscope, and much more.
Three-Dimensional Electron Microscopy, Volume 152 in the Methods in Cell Biology series, highlights new advances in the field, with this new volume presenting interesting chapters focusing on FIB-SEM of mouse nervous tissue: fast and slow sample preparation, Serial-section electron microscopy using ATUM - Automated Tape collecting Ultra-Microtome, Software for automated acquisition of electron tomography tilt series, Scanning electron tomography of biological samples embedded in plastic, Cryo-STEM tomography for Biology, CryoCARE: Content-aware denoising of cryo-EM images and tomograms using artificial neural networks, Expedited large-volume 3-D SEM workflows for comparative vertebrate microanatomical imaging, and many other interesting topics.
Light and Video Microscopy, Third Edition provides a step-by-step journey through philosophy, psychology and the geometrical and physical optics involved in interpreting images formed by light microscopes. The book addresses the intricacies necessary to set up light microscopes that allow one to visualize transparent specimens and, in the process, quantitatively determine various physico-chemical properties of specimens. This updated edition includes the most recent developments in microscopy, ensuring that it continues to be the most comprehensive, easy-to-use, and informative guide on light microscopy. With its presentation of geometrical optics, it assists the reader in understanding image formation and light movement within the microscope.
The confocal microscope is appropriate for imaging cells or the measurement of industrial artefacts. However, junior researchers and instrument users sometimes misuse imaging concepts and metrological characteristics, such as position resolution in industrial metrology and scale resolution in bio-imaging. And, metrological characteristics or influence factors in 3D measurement such as height assessment error caused by 3D coupling effect are so far not yet identified. In this book, the authors outline their practices by the working experiences on standardization and system design. This book assumes little previous knowledge of optics, but rich experience in engineering of industrial measurements, in particular with profile metrology or areal surface topography will be very helpful to understand the theoretical concerns and value of the technological advances. It should be useful for graduate students or researchers as extended reading material, as well as microscope users alongside their handbook.
Comprises four parts, the first of which provides an overview of the topics that are developed from fundamental principles to more advanced levels in the other parts. Presents in the second part an in-depth introduction to the relevant background in molecular and cellular biology and in physical chemistry, which should be particularly useful for students without a formal background in these subjects. Provides in the third part a detailed treatment of microscopy techniques and optics, again starting from basic principles. Introduces in the fourth part modern statistical approaches to the determination of parameters of interest from microscopy data, in particular data generated by single molecule microscopy experiments. Uses two topics related to protein trafficking (transferrin trafficking and FcRn-mediated antibody trafficking) throughout the text to motivate and illustrate microscopy techniques
Micro-Raman Spectroscopy introduces readers to the theory and application of Raman microscopy. Raman microscopy is used to study the chemical signature of samples with little preperation in a non-destructive manner. An easy to use technique with ever increasing technological advances, Micro-Raman has significant application for researchers in the fields of materials science, medicine, pharmaceuticals, and chemistry.
This monograph focuses on modern femtosecond laser microscopes for two photon imaging and nanoprocessing, on laser tweezers for cell micromanipulation as well as on fluorescence lifetime imaging (FLIM) in Life Sciences. The book starts with an introduction by Dr. Wolfgang Kaiser, pioneer of nonlinear optics and ends with the chapter on clinical multiphoton tomography, the novel high resolution imaging technique. It includes a foreword by the nonlinear microscopy expert Dr. Colin Sheppard. Contents Part I: Basics Brief history of fluorescence lifetime imaging The long journey to the laser and its use for nonlinear optics Advanced TCSPC-FLIM techniques Ultrafast lasers in biophotonics Part II: Modern nonlinear microscopy of live cells STED microscopy: exploring fluorescence lifetime gradients for super-resolution at reduced illumination intensities Principles and applications of temporal-focusing wide-field two-photon microscopy FLIM-FRET microscopy TCSPC FLIM and PLIM for metabolic imaging and oxygen sensing Laser tweezers are sources of two-photon effects Metabolic shifts in cell proliferation and differentiation Femtosecond laser nanoprocessing Cryomultiphoton imaging Part III: Nonlinear tissue imaging Multiphoton Tomography (MPT) Clinical multimodal CARS imaging In vivo multiphoton microscopy of human skin Two-photon microscopy and fluorescence lifetime imaging of the cornea Multiscale correlative imaging of the brain Revealing interaction of dyes and nanomaterials by multiphoton imaging Multiphoton FLIM in cosmetic clinical research Multiphoton microscopy and fluorescence lifetime imaging for resection guidance in malignant glioma surgery Non-invasive single-photon and multi-photon imaging of stem cells and cancer cells in mouse models Bedside assessment of multiphoton tomography
Correlative Light and Electron Microscopy III, Volume 140, a new volume in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Topics discussed in this new release include Millisecond time-resolved CLEM, Super resolution LM und SEM of high-pressure frozen C. elegans, Preservation fluorescence, super res CLEM, APEX in Tissue, Corrsight mit IBIDI flowthrough chamber, Correlative Light Atomic Force Electronic Microscopy (CLAFEM), Atmospheric EM CLEM, and High-precision correlation, amongst other topics. Chapters in this ongoing series deal with different approaches for analyzing the same specimen using more than one imaging technique. The strengths and application area of each is presented, with this volume exploring the aspects of sample preparation of diverse biological systems for different CLEM approaches.
This issue of Dermatologic Clinics, guest edited by Jane M. Grant-Kels, Giovanni Pellacani, and Caterina Longo, is devoted to Confocal Microscopy. Articles in this timely issue include: Basics of Confocal Microscopy and the Complexity of Diagnosing Skin Tumors: New Imaging Tools in Clinical Practice, Diagnostic Workflows, Cost-estimate and New Trends; Opening a Window Into Living Tissue: Histopathologic Features of Confocal Microscopic Findings in Skin Tumors; Addressing the Issue of Discriminating Nevi from Early Melanomas: Dues and Pitfalls; Melanoma Types and Melanoma Progression: The Different Faces; Lentigo Maligna, Macules of the Face and Lesions on Sun-damaged Skin: Confocal makes the Difference; Glowing in the dark: use of confocal microscopy in dark pigmented lesions; Enlightening the Pink: Use of Confocal Microscopy in Pink Lesions; Shining into the White: The Spectrum of Epithelial Tumors from Actinic Keratosis to SCC; Application of Wide-probe and Handy-probe for Skin Cancer Diagnosis: Pros and Cons; Confocal Microscopy for Special Sites and Special Uses; Confocal Algorithms for Inflammatory Skin Diseases and Hair Diseases; In Vivo and Ex Vivo Confocal Microscopy for Dermatologic and Mohs' Surgeons; Telediagnosis with Confocal Microscopy: A Reality or a Dream?; "Well-aging": Early Detection of Skin Aging Signs; The Role of Confocal Microscopy in Clinical Trials for Treatment Monitoring; and Fluorescence (multiwave) Confocal Microscopy.
This book covers the fundamentals of Helium Ion Microscopy (HIM) including the Gas Field Ion Source (GFIS), column and contrast formation. It also provides first hand information on nanofabrication and high resolution imaging. Relevant theoretical models and the existing simulation approaches are discussed in an extra section. The structure of the book allows the novice to get acquainted with the specifics of the technique needed to understand the more applied chapters in the second half of the volume. The expert reader will find a complete reference of the technique covering all important applications in several chapters written by the leading experts in the field. This includes imaging of biological samples, resist and precursor based nanofabrication, applications in semiconductor industry, using Helium as well as Neon and many more. The fundamental part allows the regular HIM user to deepen his understanding of the method. A final chapter by Bill Ward, one of the pioneers of HIM, covering the historical developments leading to the existing tool complements the content. |
You may like...
The Physics of Musical Instruments
Neville H. Fletcher, Thomas D. Rossing
Hardcover
R3,186
Discovery Miles 31 860
The Hot Universe - Proceedings of the…
Katsuji Koyama, Shunji Kitamoto, …
Hardcover
R4,115
Discovery Miles 41 150
Land Surface Remote Sensing in…
Nicolas Baghdadi, Mehrez Zribi
Hardcover
Tree-based Heterogeneous FPGA…
Umer Farooq, Zied Marrakchi, …
Hardcover
R2,657
Discovery Miles 26 570
Spotlight-Mode Synthetic Aperture Radar…
Charles V. J. Jakowatz, Daniel E. Wahl, …
Hardcover
R6,659
Discovery Miles 66 590
Lasers with Nuclear Pumping
S.P. Melnikov, A.A. Sinyanskii, …
Hardcover
Acoustics of Layered Media II - Point…
Leonid M. Brekhovskikh, Oleg A. Godin
Hardcover
R5,438
Discovery Miles 54 380
|