![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment > Microscopy
As the selection of material for particular engineering properties becomes increasingly important in keeping costs down, methods for evaluating material properties also become more relevant. One such method examines the geometry of grain boundaries, which reveals much about the properties of the material. Studying material properties from their geometrical measurements, The Measurement of Grain Boundary Geometry provides a framework for a specialized application of electron microscopy for metals and alloys and, by extension, for ceramics, minerals, and semiconductors. The book presents an overview of the developments in the theory of grain boundary geometry and its practical applications in material engineering. It also covers the tunneling electron microscope (TEM), experimental aspects of data collection, data processing, and examples from actual investigations. Each step of the analysis process is clearly described, from data collection through processing, analysis, representation, and display to applications. The book also includes a glossary of terms. Exploring both the experimental and analytical aspects of the subject, this practical reference guide is essential for researchers and students involved in material properties, whether in physics, materials science, metallurgy, or physical chemistry.
Presents recent developments in theoretical and experimental research of nanophotonics Discusses properties and features of nanophotonic devices, e.g. scanning near-field optical microscopy, nanofi ber/nanowire based photonic devices Illustrates the most promising nanophotonic devices and instruments and their application Suits well for researchers and graduates in nanophotonics field Contents Scanning near-field optical microscopy Nanofibers/nanowires and their applications in photonic components and devices Micro/nano-optoelectronic devices based on photonic crystal
The book describes recent progress of near-field optical science and technology. The title of the book implies capabilities of optical near-field not only for imaging/microscopy but also for fabrication/manipulation/processing in nanometric scale. The authors introduce the differences between near-field optics and far-field optics from both an experimental and theoretical perspective. The book touches on a wide range of topics in near-field optics, and can be used both by the novice and experienced researcher already familiar with the subject, to connect the experimental with the theoretical aspects of near-field optics.
This book is an introduction to electron holography, a newly developed technique for observing and measuring microscopic structures of matter and fields using the wave nature of electrons. It describes principles, experimental details, and observation examples for vortices in superconductors, the magnetic domain structure in ferromagnets, and for fundamental phenomena of quantum mechanics such as the single-electron build up of an interference pattern and the Aharonov-Bohm effect. The most recent information in this rapidly evolving field is included in this new edition, for example, the dynamical observation of vortices in superconductors.
Molecular recognition, also known as biorecognition, is the heart of all biological interactions. Originating from protein stretching experiments, dynamic force spectroscopy (DFS) allows for the extraction of detailed information on the unbinding process of biomolecular complexes. It is becoming progressively more important in biochemical studies and is finding wider applications in areas such as biophysics and polymer science. In six chapters, Dynamic Force Spectroscopy and Biomolecular Recognition covers the most recent ideas and advances in the field of DFS applied to biorecognition: Chapter 1: Reviews the basic and novel aspects of biorecognition and discusses the emerging capabilities of single-molecule techniques to disclose kinetic properties and molecular mechanisms usually hidden in bulk measurements Chapter 2: Describes the basic principle of atomic force microsocopy (AFM) and DFS, with particular attention to instrumental and theoretical aspects more strictly related to the study of biomolecules Chapter 3: Overviews the theoretical background in which experimental data taken in nonequilibrum measurements of biomolecular unbinding forces are extrapolated to equilibrium conditions Chapter 4: Reviews the most common and efficient strategies adopted in DFS experiments to immobilize the interacting biomolecules to the AFM tip and to the substrate Chapter 5: Presents and discusses the most representative aspects related to the analysis of DFS data and the challenges of integrating well-defined criteria to calibrate data in automatic routinary procedures Chapter 6: Overviews the most relevant DFS applications to study biorecognition processes, including the biotin/avidin pair, and selected results on various biological complexes, including antigen/antibody, proteins/DNA, and complexes involved in adhesion processes Chapter 7: Summarizes the main results obtained by DFS applied to study biorecognition processes with forthcoming theoretical and experimental advances Although DFS is a widespread, worldwide technique, no books focused on this subject have been available until now. Dynamic Force Spectroscopy and Biomolecular Recognition provides the state of the art of experimental data analysis and theoretical procedures, making it a useful tool for researchers applying DFS to study biorecognition processes.
Research in carbon nanotubes has reached a horizon that is impacting a variety of fields, such as nanoelectronics, flat panel display, composite materials, sensors, nanodevices, and novel instrumentation. The unique structures of the nanotubes result in numerous superior physical and chemical properties, such as the strongest mechan ical strength, the highest thermal conductivity, room-temperature ballistic quantum conductance, electromechanical coupling, and super surface functionality. Several books are available that introduce the synthesis, physical and chemical properties, and applications of carbon nanotubes. Among the various analytical techniques, high-resolution transmission electron microscopy (HRTEM) has played a key role in the discovery and characterization of carbon nanotubes. It may be claimed that carbon nanotubes might not have been discovered without using HRTEM. There is a great need for a book that addresses the theory, techniques, and applications of electron microscopy and associated techniques for nanotube research. The objective of this book is to fill this gap. The potential of HRTEM is now well accepted in wide-ranging communities such as materials science, physics, chemistry, and electrical engineering. TEM is a powerful technique that is indispensable for characterizing nanomaterials and is a tool that each major research institute must have in order to advance its research in nanotechnology."
Providing specific knowledge in the theory of image analysis, optics, fluorescence, and imaging devices in biomedical laboratories, this timely and indispensable volume focuses on the theory and applications of detection, morphometry, and motility measurement techniques applied to bacteria, fungi, yeasts and protozoa.
Histochemistry and cytochemistry are important fields for studying the inner workings of cells and tissues of the body. While visualization techniques have been in use for many years, new methods of detection developed recently help researchers and practitioners better understand cell activity. Histochemical and Cytochemical Methods of Visualization describes the essential techniques that can be used for histochemical investigations in both light and transmission electron microscopy. The book begins by discussing techniques in light microscopy. It reviews classical methods of visualization, histochemical and histoenzymatic methods, and methods used to visualize cell proliferation and apoptosis. Next, the book examines the cytochemical methods used in electron microscopy with traditional techniques, as well as more specialized methods. The final section provides an overview of image analysis and describes how image processing methods can be used to extract vital information. A 16-page insert supplies color illustrations to enhance the text. Techniques will continue to adapt to the latest technological innovations, allowing more and more precise quantification of images. These developments are essential to the biological as well as the medical sciences. This manual is a critical resource for novice and experienced researchers, technicians, and students who need to visualize what happens in the cell, the molecules expressed, the main enzymatic activities, and the repercussions of the molecular activities upon the structure of the cells in the body.
This interdisciplinary book, Advanced Microscopy: A Strong Analytical Tool in Materials Science, covers the methodology and applications of different advanced microscopic techniques in various research fields, including chemistry, nanotechnology, polymers, chemical engineering, and biomedical engineering, providing an informative overview that helps to determine the best applications for advanced materials. Materials usually behave very differently at nanoscale in all aspects, and this volume shows how microscopy can help provide a detailed understanding of materials such as semiconductors, metals, polymers, biopolymers, etc. The volume illustrates advanced microscopic techniques that include scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), confocal microscopy, and others. The microscopy techniques presented in the volume show applications in many areas of science, including botany and plant science, medicine, nanotechnology, chemistry, food science, waste management, and others. This book presents the diverse advanced microscopic techniques for researchers, giving a better understanding as well as implementation of novel techniques in materials science.
The damage that can occur in certain fibrous raw materials or in textiles during their production and storage of textiles is expertly described in this book by Karl Mahall. In particular, he explains methods for finding concealed textile defects by using microscopic analysis.Besides minor improvements and corrections, the new edition contains a new chapter "Poultry Feathers as Filling Material for Bedding and Textiles - Analysis of Faults." The reason for its inclusion is that natural feathers and down are not only used as a filling material for bedding but also for garments, such as anoraks, coats and sleeping bags.This book is especially useful as a manual for both chemical and textile engineers and quality engineers. It is also a useful reference for others in the textile industry in general.
Aberration-Corrected Imaging in Transmission Electron Microscopy provides an introduction to aberration-corrected atomic-resolution electron microscopy imaging in materials and physical sciences. It covers both the broad beam transmission mode (TEM; transmission electron microscopy) and the scanning transmission mode (STEM; scanning transmission electron microscopy). The book is structured in three parts. The first part introduces the basics of conventional atomic-resolution electron microscopy imaging in TEM and STEM modes. This part also describes limits of conventional electron microscopes and possible artefacts which are caused by the intrinsic lens aberrations that are unavoidable in such instruments. The second part introduces fundamental electron optical concepts and thus provides a brief introduction to electron optics. Based on the first and second parts of the book, the third part focuses on aberration correction; it describes the various aberrations in electron microscopy and introduces the concepts of spherical aberration correctors and advanced aberration correctors, including correctors for chromatic aberration. This part also provides guidelines on how to optimize the imaging conditions for atomic-resolution STEM and TEM imaging.This second edition has been completely revised and updated in order to incorporate the very recent technological and scientific achievements that have been realized since the first edition appeared in 2010.
This book highlights emerging diffraction studies of strain and dislocation gradients with mesoscale resolution, which is currently a focus of research at laboratories around the world. While ensemble-average diffraction techniques are mature, grain and subgrain level measurements needed to understand real materials are just emerging. In order to understand the diffraction signature of different defects, it is necessary to understand the distortions created by the defects and the corresponding changes in the reciprocal space of the non-ideal crystals.Starting with a review of defect classifications based on their displacement fields, this book then provides connections between different dislocation arrangements, including geometrically necessary and statistically stored dislocations, and other common defects and the corresponding changes in the reciprocal space and diffraction patterns. Subsequent chapters provide an overview of microdiffraction techniques developed during the last decade to extract information about strain and dislocation gradients. X-ray microdiffraction is a particularly exciting application compared with alternative probes of local crystalline structure, orientation and defect density, because it is inherently non-destructive and penetrating.
The purpose of this book is to provide the most comprehensive,
easy-to-use, and informative guide on light microscopy. "Light and
Video Microscopy" will prepare the reader for the accurate
interpretation of an image and understanding of the living cell.
With the presentation of geometrical optics, it will assist the
reader in understanding image formation and light movement within
the microscope. It also provides an explanation of the basic modes
of light microscopy and the components of modern electronic imaging
systems and guides the reader in determining the physicochemical
information of living and developing cells, which influence
interpretation.
Introduces both optical microscopy and medical imaging with an emphasis on recurring themes such as resolution and contrast to reinforce understanding. Includes many illustrations and boxed material that give more detailed explanations. Features hands-on activities and experiments. Provides end-of-chapter problems for self-study. Offers supplementary online materials including a solutions manual.
Because of its simplicity of use and quantitative results, Scanning Electrochemical Microscopy (SECM) has become an indispensable tool for the study of surface reactivity. The fast expansion of the SECM field over several years has been fueled by the introduction of new probes, commercially available instrumentation, and new practical applications. Scanning Electrochemical Microscopy, Third Edition offers essential background and in-depth overviews of specific applications in self-contained chapters. The vitality and growing popularity of SECM over the past 30+ years have largely been determined by its versatility and capability to remain useful in the changing scientific and technological environments. New applications reported during the last decade reflect significant current activity in biomedical and energy-related research. This thoroughly updated edition provides up-to-date comprehensive reviews of different aspects of SECM. New chapters by renowned professionals in the field cover recent advances in different areas of SECM including nanoSECM, surface reactions and films, batteries, and fuel cells. Expanded coverage of electrocatalysis and surface interrogation as well as photoelectrochemistry and photoelectrocatalysis are also provided. Useful for a broad range of interdisciplinary research-from biological systems to nanopatterning-this book is invaluable to all interested in learning and applying SECM.
Topics in Electron Diffraction and Microscopy of Materials
celebrates the retirement of Professor Michael Whelan from the
University of Oxford. Professor Whelan taught many of today's heads
of department and was a pioneer in the development and use of
electron microscopy. His collaborators and colleagues, each one of
whom has made important advances in the use of microscopy to study
materials, have contributed to this cohesive work.
This book describes for the first time how Monte Carlo modeling methods can be applied to electron microscopy and microanalysis. Computer programs for two basic types of Monte Carlo simulation are developed from physical models of the electron scattering process--a single scattering program capable of high accuracy but requiring long computation times, and a plural scattering program which is less accurate but much more rapid. Optimized for use on personal computers, the programs provide a real time graphical display of the interaction. The programs are then used as the starting point for the development of programs aimed at studying particular effects in the electron microscope, including backscattering, secondary electron production, EBIC and cathodo-luminescence imaging, and X-ray microanalysis. The computer code is given in a fully annotated format so that it may be readily modified for specific problems. Throughout, the author includes numerous examples of how such applications can be used. Students and professionals using electron microscopes will want to read this important addition to the literature.
Efficiency and life time of solar cells, energy and power density of the batteries, and costs of the fuel cells alike cannot be improved unless the complex electronic, optoelectronic, and ionic mechanisms underpinning operation of these materials and devices are understood on the nanometer level of individual defects. Only by probing these phenomena locally can we hope to link materials structure and functionality, thus opening pathway for predictive modeling and synthesis. While structures of these materials are now accessible on length scales from macroscopic to atomic, their functionality has remained Terra Incognitae. In this volume, we provide a summary of recent advances in scanning probe microscopy studies of local functionality of energy materials and devices ranging from photovoltaics to batteries, fuel cells, and energy harvesting systems. Recently emergent SPM modes and combined SPM-electron microscopy approaches are also discussed. Contributions by internationally renowned leaders in the field describe the frontiers in this important field.
The combination of electron microscopy with transmitted light
microscopy (termed correlative light and electron microscopy; CLEM)
has been employed for decades to generate molecular identification
that can be visualized by a dark, electron-dense precipitate. This
new volume of "Methods in Cell Biology" covers many areas of CLEM,
includinga brief history and overview on CLEM methods, imaging of
intermediate stages of meiotic spindle assembly in "C. elegans"
embryos using CLEM, and capturing endocytic segregation events with
HPF-CLEM.
This dissertation examines the cultural and educational history of central Missouri between 1820 and 1860, and in particular, the issue of master-slave relationships and how they affected education (broadly defined as the transmission of Southern culture). Although Missouri had one of the lowest slave populations during the Antebellum period, Central Missouri - or what became known as Little Dixie - had slave percentages that rivaled many regions and counties of the Deep South. However, slaves and slave owners interacted on a regular basis, which affected cultural transmission in the areas of religion, work, and community. Generally, slave owners in Little Dixie showed a pattern of paternalism in all these areas, but the slaves did not always accept their masters' paternalism, and attempted to forge a life of their own.
Fluctuations in the level and pattern of international trade have a profound effect on the economies of less developed countries. This book explores the relationship between international trade and globl development through a series of essays which relate advances in trade theory to key issues in trade policy. The book, first published in 1991, is in honour of Jagdish Bhagwati and reflects the range and significance of his contributions to international economics.
Biomedical photonics is currently one of the fastest growing fields, connecting research in physics, optics, and electrical engineering coupled with medical and biological applications. It allows for the structural and functional analysis of tissues and cells with resolution and contrast unattainable by any other methods. However, the major challenges of many biophotonics techniques are associated with the need to enhance imaging resolution even further to the sub-cellular level as well as translate them for in vivo studies. The tissue optical clearing method uses immersion of tissues into optical clearing agents (OCAs) that reduces the scattering of tissue and makes tissue more transparent and this method has been successfully used ever since. This book is a self-contained introduction to tissue optical clearing, including the basic principles and in vitro biological applications, from in vitro to in vivo tissue optical clearing methods, and combination of tissue optical clearing and various optical imaging for diagnosis. The chapters cover a wide range of issues related to the field of tissue optical clearing: mechanisms of tissue optical clearing in vitro and in vivo; traditional and innovative optical clearing agents; recent achievements in optical clearing of different tissues (including pathological tissues) and blood for optical imaging diagnosis and therapy. This book provides a comprehensive account of the latest research and possibilities of utilising optical clearing as an instrument for improving the diagnostic effectiveness of modern optical diagnostic methods. The book is addressed to biophysicist researchers, graduate students and postdocs of biomedical specialties, as well as biomedical engineers and physicians interested in the development and application of optical methods in medicine. Key features: The first collective reference to collate all known knowledge on this topic Edited by experts in the field with chapter contributions from subject area specialists Brings together the two main approaches in immersion optical clearing into one cohesive book
The book presents a clear and comprehensive review of the current status of the holographic microscopy with discussion of the positive and negative features of classical and holographic methods for solving the problem of three-dimesional (3D) imaging of phase microscopic objects. Classical and holographic methods of phase, interference and polarization contrast are discussed. Combination of the developed holographic methods with the methods of digital image processing allowed creating the digital holographic interference microscope (DHIM). The first 3D images of native phase microscopic objects such as blood cells were obtained using the DHIM. The results of DHIM application for study of blood erythrocytes, thin films, micro-crystals are presented.
Fluctuations in the level and pattern of international trade have a profound effect on the economies of less developed countries. This book explores the relationship between international trade and globl development through a series of essays which relate advances in trade theory to key issues in trade policy. The book, first published in 1991, is in honour of Jagdish Bhagwati and reflects the range and significance of his contributions to international economics.
Scanning Probe Microscopy (SPM) is the enabling tool for nano(bio)technology, which has opened new vistas in many interdisciplinary research areas. Concomitant with the developments in SPM instrumentation and techniques are new and previously unthought-of opportunities in materials nanofabrication and characterisation. In particular, the developments in addressing and manipulating matter at the level of single atoms or molecules, and studies of biological materials (e.g. live cells, or cell membranes) result in new and exciting discoveries.The rising importance of SPM demands a concise treatment in the form of a book which is accessible to interdisciplinary practitioners. This book highlights recent advances in the field of SPM with sufficient depth and breadth to provide an intellectually stimulating overview of the current state of the art. The book is based on a set of carefully selected original works from renowned contributors on topics that range from atom technology, scanning tunneling spectroscopy of self-assembled nanostructures, SPM probe fabrication, scanning force microscopy applications in biology and materials science down to the single molecule level, novel scanning probe techniques, and nanolithography.The variety of topics underlines the strong interdisciplinary character of SPM related research and the combined expertise of the contributors gives us a unique opportunity to discuss possible future trends in SPM related research. This makes the book not merely a collection of already published material but an enlightening insight into cutting edge research and global SPM research trends. |
You may like...
Medical Microscopy - a Guide to the Use…
Frank Joesph 1860-1928 Wethered
Hardcover
R1,013
Discovery Miles 10 130
The Microscope; an Introduction to the…
Simon Henry 1851-1944 Gage
Hardcover
R921
Discovery Miles 9 210
Three-Dimensional Electron Microscopy…
Thomas Muller-Reichert, Gaia Pigino
Hardcover
R4,281
Discovery Miles 42 810
Atomic Force Microscopy in Process…
Richard Bowen, Nidal Hilal
Hardcover
R3,444
Discovery Miles 34 440
The Microscope - Its Construction and…
Henri Van 1838-1909 Heurck
Hardcover
R981
Discovery Miles 9 810
The Beginnings of Electron Microscopy…
Peter W. Hawkes, Martin Hytch
Hardcover
R5,265
Discovery Miles 52 650
Illustrated Price List of Microscopes…
Richard & Joseph Philadelphia Beck
Hardcover
R807
Discovery Miles 8 070
|