![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
This book provides comprehensive coverage of state-of-the-art integrated circuit authentication techniques, including technologies, protocols and emerging applications. The authors first discuss emerging solutions for embedding unforgeable identifies into electronics devices, using techniques such as IC fingerprinting, physically unclonable functions and voltage-over-scaling. Coverage then turns to authentications protocols, with a special focus on resource-constrained devices, first giving an overview of the limitation of existing solutions and then presenting a number of new protocols, which provide better physical security and lower energy dissipation. The third part of the book focuses on emerging security applications for authentication schemes, including securing hardware supply chains, hardware-based device attestation and GPS spoofing attack detection and survival. Provides deep insight into the security threats undermining existing integrated circuit authentication techniques; Includes an in-depth discussion of the emerging technologies used to embed unforgeable identifies into electronics systems; Offers a comprehensive summary of existing authentication protocols and their limitations; Describes state-of-the-art authentication protocols that provide better physical security and more efficient energy consumption; Includes detailed case studies on the emerging applications of IC authentication schemes.
This book describes power management integrated circuits (PMIC), for power converters and voltage regulators necessary for energy efficient and small form factor systems. The authors discuss state-of-the-art PMICs not only for battery powered wearable devices, but also energy harvesting-based devices. The circuits presented support voltage scaling to reduce the overall average power consumption of a wearable device, resulting in longer device operating time. The discussion includes many designs, control techniques and approaches to distribute efficiently the power among different blocks in the device. * Demonstrates for readers how to innovate in designing power management integrated circuits (PMIC) suitable for wearable devices, powered by either battery or harvesting energy; * Introduces a dual outputs switched capacitor, using a single voltage regulator to minimize the area overhead and discusses the effect of having more than two outputs on the area and power efficiency; * Introduces a novel clock-less digital LDO regulator that eliminates the use of the clocked comparator and serial shift register in the conventional design; * Presents experimental results of energy harvesting-based power management units (PMU), using different combinations of power converters and voltage regulators, providing a guide for designers to select the appropriate option based on device requirements.
An electronic oscillator is an electronic circuit that produces a periodic (often a sine wave, a square wave, or a pulse trains) or a non-periodic (a double-mode wave or a chaotic wave) oscillating electronic signal. Oscillators convert direct current from a power supply to an alternating current signal, and are widely used in many electronic devices. This book surveys recent developments in the design, analysis and applications of this important class of circuits. Topics covered include an introduction to recent developments; analysis of bifurcation in oscillatory circuits; fractional-order oscillators; memristive and memcapacitive astable multivibrators; piecewise-constant oscillators and their applications; master-slave synchronization of hysteresis neural-type oscillators; multimode oscillations in coupled hard-oscillators; wave propagation of phase difference in coupled oscillator arrays; coupled oscillator networks with frustration; graph comparison and synchronization in complex networks; experimental studies on reconfigurable network of chaotic oscillators; fundamental operation and design of high-frequency tuned power oscillator; ring oscillators and self-timed rings in true random number generators; and attacking on-chip oscillators in cryptographic applications. Providing an overview of the state-of-the-art in oscillator circuits, this book is essential reading for researchers, advanced students and circuit designers working in circuit theory and modelling, especially nonlinear circuit engineering.
This book has been written to help digital engineers who need a few
basic analog tools in their toolbox. For practicing digital
engineers, students, educators and hands-on managers who are
looking for the analog foundation they need to handle their daily
engineering problems, this will serve as a valuable reference to
the nuts-and-bolts of system analog design in a digital world.
This book brings together a selection of the best papers from the twenty-first edition of the Forum on specification and Design Languages Conference (FDL), which took place on September 10-12, 2018, in Munich, Germany. FDL is a well-established international forum devoted to dissemination of research results, practical experiences and new ideas in the application of specification, design and verification languages to the design, modeling and verification of integrated circuits, complex hardware/software embedded systems, and mixed-technology systems. Covers Assertion Based Design, Verification & Debug; Includes language-based modeling and design techniques for embedded systems; Covers design, modeling and verification of mixed physical domain and mixed signal systems that include significant analog parts in electrical and non-electrical domains; Includes formal and semi-formal system level design methods for complex embedded systems based on the Unified Modelling Language (UML) and Model Driven Engineering (MDE).
FPGAs have almost entirely replaced the traditional Application Specific Standard Parts (ASSP) such as the 74xx logic chip families because of their superior size, versatility, and speed. For example, FPGAs provide over a million fold increase in gates compared to ASSP parts. The traditional approach for hands-on exercises has relied on ASSP parts, primarily because of their simplicity and ease of use for the novice. Not only is this approach technically outdated, but it also severely limits the complexity of the designs that can be implemented. By introducing the readers to FPGAs, they are being familiarized with current digital technology and the skills to implement complex, sophisticated designs. However, working with FGPAs comes at a cost of increased complexity, notably the mastering of an HDL language, such as Verilog. Therefore, this book accomplishes the following: first, it teaches basic digital design concepts and then applies them through exercises; second, it implements these digital designs by teaching the user the syntax of the Verilog language while implementing the exercises. Finally, it employs contemporary digital hardware, such as the FPGA, to build a simple calculator, a basic music player, a frequency and period counter and it ends with a microprocessor being embedded in the fabric of the FGPA to communicate with the PC. In the process, readers learn about digital mathematics and digital-to-analog converter concepts through pulse width modulation.
The focus of Assertion-Based Design is three-fold: To support these three over-arching goals, the authors showcase multiple forms of assertion specification: Accellera Open Verification Library (OVL), Accellera Property Specification Language (PSL), and Accellera SystemVerilog. The recommendations and claims the authors make in this book are based on their combined actual experiences in applying an assertion-based methodology to real design and verification as well as their work in developing industry assertion standards.
This book presents a collection of "lessons" on various topics commonly encountered in electronic circuit design, including some basic circuits and some complex electronic circuits, which it uses as vehicles to explain the basic circuits they are composed of. The circuits considered include a linear amplifier, oscillators, counters, a digital clock, power supplies, a heartbeat detector, a sound equalizer, an audio power amplifier and a radio. The theoretical analysis has been deliberately kept to a minimum, in order to dedicate more time to a "learning by doing" approach, which, after a brief review of the theory, readers are encouraged to use directly with a simulator tool to examine the operation of circuits in a "virtual laboratory." Though the book is not a theory textbook, readers should be familiar with the basic principles of electronic design, and with spice-like simulation tools. To help with the latter aspect, one chapter is dedicated to the basic functions and commands of the OrCad P-spice simulator used for the experiments described in the book.
This book shows in a comprehensive presentation how Bond Graph methodology can support model-based control, model-based fault diagnosis, fault accommodation, and failure prognosis by reviewing the state-of-the-art, presenting a hybrid integrated approach to Bond Graph model-based fault diagnosis and failure prognosis, and by providing a review of software that can be used for these tasks. The structured text illustrates on numerous small examples how the computational structure superimposed on an acausal bond graph can be exploited to check for control properties such as structural observability and control lability, perform parameter estimation and fault detection and isolation, provide discrete values of an unknown degradation trend at sample points, and develop an inverse model for fault accommodation. The comprehensive presentation also covers failure prognosis based on continuous state estimation by means of filters or time series forecasting. This book has been written for students specializing in the overlap of engineering and computer science as well as for researchers, and for engineers in industry working with modelling, simulation, control, fault diagnosis, and failure prognosis in various application fields and who might be interested to see how bond graph modelling can support their work. Presents a hybrid model-based, data-driven approach to failure prognosis Highlights synergies and relations between fault diagnosis and failure prognostic Discusses the importance of fault diagnosis and failure prognostic in various fields
This book highlights principles and applications of electromagnetic compatibility (EMC). After introducing the basic concepts, research progress, standardizations and limitations of EMC, the book puts emphasis on presenting the generation mechanisms and suppression principles of conducted electromagnetic interference (EMI) noise, radiated EMI noise, and electromagnetic susceptibility (EMS) problems such as electrostatic discharge (ESD), electric fast transient (EFT) and surge. By showing EMC case studies and solved examples, the book provides effective solutions to practical engineering problems. Students and researchers will be able to use the book as practical reference for EMC-related measurements and problem- solution.
The greatly expanded and updated 3rd edition of this textbook offers the reader a comprehensive introduction to the concepts of logic functions and equations and their applications across computer science and engineering. The authors' approach emphasizes a thorough understanding of the fundamental principles as well as numerical and computer-based solution methods. The book provides insight into applications across propositional logic, binary arithmetic, coding, cryptography, complexity, logic design, and artificial intelligence. Updated throughout, some major additions for the 3rd edition include: a new chapter about the concepts contributing to the power of XBOOLE; a new chapter that introduces into the application of the XBOOLE-Monitor XBM 2; many tasks that support the readers in amplifying the learned content at the end of the chapters; solutions of a large subset of these tasks to confirm learning success; challenging tasks that need the power of the XBOOLE software for their solution. The XBOOLE-monitor XBM 2 software is used to solve the exercises; in this way the time-consuming and error-prone manipulation on the bit level is moved to an ordinary PC, more realistic tasks can be solved, and the challenges of thinking about algorithms leads to a higher level of education.
This book documents some of the most recent advances on the physical layer of the Internet of Things (IoT), including sensors, circuits, and systems. The application area selected for illustrating these advances is that of autonomous, wearable systems for real-time medical diagnosis. The book is unique in that it adopts a holistic view of such systems and includes not only the sensor and processing subsystems, but also the power, communication, and security subsystems. Particular attention is paid to the integration of these IoT subsystems as well as the prototyping platforms needed for achieving such integration. Other unique features include the discussion of energy-harvesting subsystems to achieve full energy autonomy and the consideration of hardware security as a requirement for the integrity of the IoT physical layer. One unifying thread of the various designs considered in this book is that they have all been fabricated and tested in an advanced, low-power CMOS process, namely GLOBALFOUNDRIES 65nm CMOS LPe.
This book covers advances in system, control and computing. This book gathers selected high-quality research papers presented at the International Conference on Advances in Systems, Control and Computing (AISCC 2020), held at MNIT Jaipur during February 27-28, 2020. The first part is advances in systems and it is dedicated to applications of the artificial neural networks, evolutionary computation, swarm intelligence, artificial immune systems, fuzzy system, autonomous and multi-agent systems, machine learning, other intelligent systems and related areas. In the second part, machine learning and other intelligent algorithms for design of control/control analysis are covered. The last part covers advancements, modifications, improvements and applications of intelligent algorithms.
This book gathers the proceedings of the International Conference on Computational Advancement in Communication Circuits and Systems (ICCACCS 2018), which was organized by Narula Institute of Technology under the patronage of the JIS group, affiliated with West Bengal University of Technology. The book presents peer-reviewed papers that highlight new theoretical and experimental findings in the fields of electronics and communication engineering, including interdisciplinary areas like Advanced Computing, Pattern Recognition and Analysis, and Signal and Image Processing. The respective papers cover a broad range of principles, techniques and applications in microwave devices, communication and networking, signal and image processing, computations and mathematics, and control. The proceedings reflect the conference's strong emphasis on methodological approaches, and focus on applications within the domain of Computational Advancement in Communication Circuits and Systems. They also address emerging technologies in electronics and communication, together with the latest practices, issues and trends.
This book provides a thorough overview of cutting-edge research on electronics applications relevant to industry, the environment, and society at large. It covers a broad spectrum of application domains, from automotive to space and from health to security, while devoting special attention to the use of embedded devices and sensors for imaging, communication and control. The book is based on the 2019 ApplePies Conference, held in Pisa, Italy in September 2019, which brought together researchers and stakeholders to consider the most significant current trends in the field of applied electronics and to debate visions for the future. Areas addressed by the conference included information communication technology; biotechnology and biomedical imaging; space; secure, clean and efficient energy; the environment; and smart, green and integrated transport. As electronics technology continues to develop apace, constantly meeting previously unthinkable targets, further attention needs to be directed toward the electronics applications and the development of systems that facilitate human activities. This book, written by industrial and academic professionals, represents a valuable contribution in this endeavor.
This book covers terahertz antenna technology for imaging and sensing, along with its various applications. The authors discuss the use of terahertz frequency and photoconductive antenna technology for imaging applications, such as biological and bio-medical applications, non-destructive inspection of fabrics and plastics, analysis of hydration levels or detecting the presence of metallic components in samples, and detecting a variety of materials with unique spectral fingerprints in the terahertz frequency range, such as different types of explosives or several compounds used in the fabrication of medicines. Provides a comprehensive review of terahertz source and detector for imaging and sensing; Discusses photoconductive antenna technology for imaging and sensing; Presents modalities for improving the photoconductive dipole antenna performance for imaging and sensing; Explores applications in tomographic imaging, art conservation and the pharmaceutical and aerospace industries.
This book covers two main topics: First, novel fast and flexible simulation techniques for modern heterogeneous NoC-based multi-core architectures. These are implemented in the full-system simulator called InvadeSIM and designed to study the dynamic behavior of hundreds of parallel application programs running on such architectures while competing for resources. Second, a novel actor-oriented programming library called ActorX10, which allows to formally model parallel streaming applications by actor graphs and to analyze predictable execution behavior as part of so-called hybrid mapping approaches, which are used to guarantee real-time requirements of such applications at design time independent from dynamic workloads by a combination of static analysis and dynamic embedding.
This peer-reviewed book explores the technologies driving broadband internet connectivity in the fourth industrial revolution (Industry 4.0). It particularly focuses on potential solutions to introduce these technologies in emerging markets and rural areas, regions that typically form part of the digital divide and often have under-developed telecommunications infrastructures, a lack of skilled workers, and geographical restrictions that limit broadband connectivity. Research shows that ubiquitous internet access boosts socio-economic growth through innovations in science and technology, with the common goal of bringing positive change to the lives of individuals. Fifth-generation (5G) networks based on millimeter-wave (mm-wave) frequency information transfer have the potential to provide future-proof, affordable and sustainable broadband connectivity in areas where previous-generation mobile networks were unable to do so. This book discusses the principles of various technologies that enable electronic circuits to operate at mm-wave frequencies. It examines the importance of identifying, describing, and analyzing technology from a purely technological standpoint, but also acknowledges and investigates the challenges and limitations of introducing such technologies in emerging markets. Presenting recent research, the book spearheads participation in Industry 4.0 in these areas.
This book describes approaches for integrating more automation to the early stages of EDA design flows. Readers will learn how natural language processing techniques can be utilized during early design stages, in order to automate the requirements engineering process and the translation of natural language specifications into formal descriptions. This book brings together leading experts to explain the state-of-the-art in natural language processing, enabling designers to integrate these techniques into algorithms, through existing frameworks.
In November 2001 the Mathematical Research Center at Oberwolfach, Germany, hosted the third Conference on Mathematical Models and Numerical Simulation in Electronic Industry. It brought together researchers in mathematics, electrical engineering and scientists working in industry. The contributions to this volume try to bridge the gap between basic and applied mathematics, research in electrical engineering and the needs of industry.
This book provides comprehensive coverage of the latest research into integrated circuits' ageing, explaining the causes of this phenomenon, describing its effects on electronic systems, and providing mitigation techniques to build ageing-resilient circuits.
This book presents the state-of-the-art approach for transmission line protection schemes for smart power grid. It provides a comprehensive solution for real-time development of numerical relaying schemes for future power grids which can minimize cascade tripping and widespread blackout problems prevailing all around the world. The book also includes the traditional approach for transmission line protection along with issues and challenges in protection philosophy. It highlights the issues for sheltering power grid from unwanted hazards with very fundamental approach. The book follows a step-by-step approach for resolving critical issues like high impedance faults, power swing detection and auto-reclosing schemes with adaptive protection process. The book also covers the topic of hardware solution for real-time implementation of auto-reclosing scheme for transmission line protection schemes along with comparative analysis with the recently developed analytical approach such as Artificial Neural Network (ANN), Support Vector Machine (SVM) and other machine learning algorithms. It will be useful to researchers and industry professionals and students in the fields of power system protection.
This book systematically explains the fundamentals of system-level electromagnetic compatibility and introduces the basic concept of system-level electromagnetic compatibility quantification design. The topics covered include the critical technologies in the top-down quantification design of electromagnetic compatibility, quantification design of system-level electromagnetic compatibility, evaluation methods and application examples, quality control and application examples of electromagnetic compatibility development process, and real-world engineering example analysis of electromagnetic compatibility.The book proposes a top-down system-level electromagnetic compatibility quantification design method and is the first book to describe in detail how to quantitatively evaluate and predict system-level electromagnetic compatibility performance. It includes abundant engineering examples and experimental data demonstrating the usage and results of the top-down quantification design methods of system-level electromagnetic compatibility.It enables readers to obtain a thorough understanding of the theory and methods of system-level electromagnetic compatibility quantification design as well as the methodologies for engineering practice.
This book comprises the peer-reviewed proceedings of the International Conference on Communications, Signal Processing and VLSI (IC2SV) 2019. It explores the recent advances in the fields of signal and image processing, wireless and mobile communications, embedded systems, VLSI, microwave, and antennas. The contents provide insights into present technological challenges and discusses the emerging applications of different imaging techniques and communications systems. Given the range of topics covered, this book can be useful for students as well as researchers interested in the area of communications, signal processing, and VLSI technologies. |
![]() ![]() You may like...
Automotive Embedded Systems - Key…
M. Kathiresh, R. Neelaveni
Hardcover
R3,896
Discovery Miles 38 960
Robotic Fabrication in Architecture, Art…
Jan Willmann, Philippe Block, …
Hardcover
R7,150
Discovery Miles 71 500
Healthy Buildings - How Indoor Spaces…
Joseph G. Allen, John D. Macomber
Hardcover
Renovations: An Inspirational Design…
Richard Wilcock
Hardcover
Multi Tenancy for Cloud-Based In-Memory…
Jan Schaffner
Hardcover
Designing Sorting Networks - A New…
Sherenaz W. Al-Haj Baddar, Kenneth E. Batcher
Hardcover
R1,510
Discovery Miles 15 100
|