![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
Since publication of the first edition in 1988 many significant advances have occurred in IC chips that have driven the hybrid packaging processes toward even higher densities and greater performance. The almost exponential increase in density, complexity, and performance of integrated circuits over the past ten years (for example, ASIC (Application Specific Integrated Circuit), VHSIC (Very High Speed IC), VLSIC (Very Large Scale IC), and ULSIC (Ultra Large Scale IC) have driven developments in the interconnect substrates culminating in what is now known as multichip modules (MCM). However, the fundamentals of design, fabrication, and testing of MCMs are essentially the same as for hybrid microcircuit. In the authors' opinion MCMs are extensions of hybrid circuits that can accommodate the new generation of high-speed high-performance chips. In this revised edition they have therefore expanded their treatment of hybrid circuits without finding it necessary to change the fundamentals. They have included a separate chapter on multichip modules and throughout the book have included new and emerging materials and processes that are beginning to be used. Examples include: metal-matrix composites and aluminum nitride as substrate materials, plastic encapsulated microcircuits and chip-on-board as low-cost alternatives to hermetic sealed packages, atmospheric friendly cleaning solvents and methods, and advanced high I/O density quad flat packages (QFP) and ball grid array (BGA) packages. Since the first edition, there have also been tremendous advances in software programs for thermal and electrical analysis and these are also treated in this new edition. The abbreviated Table ofContents below includes the chapter titles and selected sub-headings.
This book presents select proceedings of the International Conference on Advances in Electrical Control and Signal Systems (AECSS) 2019. The focus is on the current developments in control and signal systems in electrical engineering, and covers various topics such as power systems, energy systems, micro grid, smart grid, networks, fuzzy systems and their control. The book also discusses various properties and performance of signal systems and their applications in different fields. The contents of this book can be useful for students, researchers as well as professionals working in power and energy systems, and other related fields.
This book showcases the state of the art in the field of sensors and microsystems, revealing the impressive potential of novel methodologies and technologies. It covers a broad range of aspects, including: bio-, physical and chemical sensors, actuators, micro- and nano-structured materials, mechanisms of interaction and signal transduction, polymers and biomaterials, sensor electronics and instrumentation, analytical microsystems, recognition systems and signal analysis and sensor networks as well as manufacturing technologies, environmental, food, energy and biomedical applications. The book gathers a selection of papers presented at the AISEM Regional Workshop on Sensors and Microsystems, held in Portici (Naples), Italy in February 2020.
This book describes the most frequently used high-speed serial buses in embedded systems, especially those used by FPGAs. These buses employ SerDes, JESD204, SRIO, PCIE, Aurora and SATA protocols for chip-to-chip and board-to-board communication, and CPCIE, VPX, FC and Infiniband protocols for inter-chassis communication. For each type, the book provides the bus history and version info, while also assessing its advantages and limitations. Furthermore, it offers a detailed guide to implementing these buses in FPGA design, from the physical layer and link synchronization to the frame format and application command. Given its scope, the book offers a valuable resource for researchers, R&D engineers and graduate students in computer science or electronics who wish to learn the protocol principles, structures and applications of high-speed serial buses.
This book fills in details that are often left out of modern books on the theory of antennas. The starting point is a discussion of some general principles that apply to all electronic systems and to antennas in particular. Just as time domain functions can be expanded in terms of sine waves using Fourier transforms, spatial domain functions can be expanded in terms of plane waves also using Fourier transforms, and K-space gain is the spatial Fourier transform of the aperture weighting function. Other topics discussed include the Discrete Fourier Transform (DFT) formulation of antenna gain and what is missing in this formulation, the effect of sky temperature on the often specified G/T ratio of antennas, sidelobe control using conventional and novel techniques, and ESA digital beamforming versus adaptive processing to limit interference. Presents content the author derived when first asked to evaluate the performance of an electronically scanned array under design with manufacturing imperfections and design limitations; Enables readers to understand the firm theoretical foundation of antenna gain even when they must start from well-known formulations rather than first principles; Explains in a straightforward manner the relationship between antenna gain and aperture area; Discusses the relationship between sidelobe control algorithms and aperture shape, how to take advantage of it, and what the penalties are; Shows the equivalence of Minimum-Variance, Distortionless Response (MVDR) and Space-Time Adaptive Processing (STAP) and how these algorithms can be used with ESA subarrays to mitigate interference.
Analog and Power Wafer Level Chip Scale Packaging presents a state-of-art and in-depth overview in analog and power WLCSP design, material characterization, reliability and modeling. Recent advances in analog and power electronic WLCSP packaging are presented based on the development of analog technology and power device integration. The book covers in detail how advances in semiconductor content, analog and power advanced WLCSP design, assembly, materials and reliability have co-enabled significant advances in fan-in and fan-out with redistributed layer (RDL) of analog and power device capability during recent years. Since the analog and power electronic wafer level packaging is different from regular digital and memory IC package, this book will systematically introduce the typical analog and power electronic wafer level packaging design, assembly process, materials, reliability and failure analysis, and material selection. Along with new analog and power WLCSP development, the role of modeling is a key to assure successful package design. An overview of the analog and power WLCSP modeling and typical thermal, electrical and stress modeling methodologies is also presented in the book.
Radio Frequency and Microwave Power Amplifiers are finding an increasingly broad range of applications, particularly in communications and broadcasting, but also in the industrial, medical, automotive, aviation, military, and sensing fields. Each application has its own design specifications, for example, high linearity in modern communication systems or high efficiency in broadcasting, and, depending on process technology, capability to operate efficiently at very high frequencies, such as 77 GHz and higher for automotive radars. Advances in design methodologies have practical applications in improving gain, power output, bandwidth, power efficiency, linearity, input and output impedance matching, and heat dissipation. This essential reference presented in two volumes aims to provide comprehensive, state-of-the-art coverage of RF and microwave power amplifier design with in-depth descriptions of current and potential future approaches. Volume 1 covers principles, device modeling and matching networks, while volume 2 focuses specifically on efficiency and linearity enhancement techniques. The volumes will be of particular interest to engineers and researchers engaged in RF and microwave amplifier design, and those who are interested in systems incorporating RF and microwave amplifiers.
This holistic book is an invaluable reference for addressing various practical challenges in architecting and engineering Intelligent IoT and eHealth solutions for industry practitioners, academic and researchers, as well as for engineers involved in product development. The first part provides a comprehensive guide to fundamentals, applications, challenges, technical and economic benefits, and promises of the Internet of Things using examples of real-world applications. It also addresses all important aspects of designing and engineering cutting-edge IoT solutions using a cross-layer approach from device to fog, and cloud covering standards, protocols, design principles, reference architectures, as well as all the underlying technologies, pillars, and components such as embedded systems, network, cloud computing, data storage, data processing, big data analytics, machine learning, distributed ledger technologies, and security. In addition, it discusses the effects of Intelligent IoT, which are reflected in new business models and digital transformation. The second part provides an insightful guide to the design and deployment of IoT solutions for smart healthcare as one of the most important applications of IoT. Therefore, the second part targets smart healthcare-wearable sensors, body area sensors, advanced pervasive healthcare systems, and big data analytics that are aimed at providing connected health interventions to individuals for healthier lifestyles.
Suitable as a reference work for reliability professionals or as a
text for advanced undergraduate or graduate students, this book
introduces the reader to the widely dispersed reliability
literature of microelectronic and electronic-optional devices.
Reliability and Failure of Electronic Materials and Devices
integrates a treatment of chip and packaging level failures within
the context of the atomic mechanisms and models used to explain
degradation, and the statistical handling of lifetime data.
Electromigration, dielectric radiation damage and the mechanical
failure of contacts and solder joints are among the failure
mechanisms considered. An underlying thread of the book concerns
product defects--their relation to yield and reliability, the role
they play in failure, and the way they are experimentally
exposed.
This thesis explores several fundamental topics in mesoscopic circuitries that incorporate few electronic conduction channels. It reports a series of long-awaited experiments that establish a new state of the art. The first experiments address the quantized character of charge in circuits. We demonstrate the charge quantization criterion, observe the predicted charge quantization scaling and a crossover toward a universal behavior as temperature is increased. The second set of experiments addresses the unconventional quantum critical physics that arises in the multichannel Kondo model. We observe the predicted universal Kondo fixed points and validate the numerical renormalization group scaling curves. Away from the quantum critical point, we obtain a direct visualization of the development of a second-order quantum phase transition.
This book uses motivating examples and real-life attack scenarios to introduce readers to the general concept of fault attacks in cryptography. It offers insights into how the fault tolerance theories developed in the book can actually be implemented, with a particular focus on a wide spectrum of fault models and practical fault injection techniques, ranging from simple, low-cost techniques to high-end equipment-based methods. It then individually examines fault attack vulnerabilities in symmetric, asymmetric and authenticated encryption systems. This is followed by extensive coverage of countermeasure techniques and fault tolerant architectures that attempt to thwart such vulnerabilities. Lastly, it presents a case study of a comprehensive FPGA-based fault tolerant architecture for AES-128, which brings together of a number of the fault tolerance techniques presented. It concludes with a discussion on how fault tolerance can be combined with side channel security to achieve protection against implementation-based attacks. The text is supported by illustrative diagrams, algorithms, tables and diagrams presenting real-world experimental results.
This book presents high-quality research papers presented at the International Conference on Soft Computing for Intelligent Systems (SCIS 2020), held during 18-20 December 2020 at University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra, Haryana, India. The book encompasses all branches of artificial intelligence, computational sciences and machine learning which is based on computation at some level such as AI-based Internet of things, sensor networks, robotics, intelligent diabetic retinopathy, intelligent cancer genes analysis using computer vision, evolutionary algorithms, fuzzy systems, medical automatic identification intelligence system and applications in agriculture, health care, smart grid and instrumentation systems. The book is helpful for educators, researchers and developers working in the area of recent advances and upcoming technologies utilizing computational sciences in signal processing, imaging, computing, instrumentation, artificial intelligence and their applications.
VHDL Coding Styles and Methodologies provides an in-depth study of the VHDL language rules, coding styles, and methodologies. This book clearly distinguishes good from poor coding methodologies using an easy to remember symbology notation along with a rationale for each guideline. The VHDL concepts, rules and styles are demonstrated using complete compilable and simulatable examples which are also supplied on the accompanying disk. VHDL Coding Styles and Methodologies provides practical applications of VHDL and techniques that are current in the industry. It explains how to apply the VHDL guidelines using several complete examples. The learning by example' teaching approach along with an in-depth presentation of the language rules application methodology provides the necessary knowledge to create digital hardware designs and models that are readable, maintainable, predictable, and efficient. VHDL Coding Styles and Methodologies is intended for both college students and design engineers. It provides a practical approach to learning VHDL. Combining methodologies and coding styles along with VHDL rules leads the reader in the right direction from the beginning.
This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to "RF and Microwave Microelectronics Packaging" (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in understanding the leading issues in the commercial sector. It is also a good reference and self-studying guide for students seeking future employment in consumer electronics.
This book discusses a number of important topical technical and non-technical issues related to the global energy, environment and socio-economic developments for professionals and students directly and indirectly involved in the relevant fields. It shows how renewable energy offers solutions to mitigate energy demand and helps achieve a clean environment, and also addresses the lack of a clear vision in the development of technology and a policy to reach the mandatory global renewable energy targets to reduce greenhouse gas emissions and stimulate socio-economic development. The book is structured in such a way that it provides a consistent compilation of fundamental theories, a compendium of current research and development activities as well as new directions to overcome critical limitations; future technologies for power grids and their control, stability and reliability are also presented.
Simplified Design of Data Converters shows how to design and
experiment with data converters, both analog-to-digital and digital
to analog. The design approach here is the same one used in all of
John Lenk's best-selling books on simplified and practical design.
Throughout the book, design problems start with guidelines for
selecting all components on a trial-value basis, assuming a
specific design goal and set of conditions. Then, using the
guideline values in experimental circuits, the desired results are
produced by varying the experimental component values, if needed.
This book focuses on conceptual frameworks that are helpful in understanding the basics of electronics - what the feedback system is, the principle of an oscillator, the operational working of an amplifier, and other relevant topics. It also provides an overview of the technologies supporting electronic systems, like OP-AMP, transistor, filter, ICs, and diodes. It consists of seven chapters, written in an easy and understandable language, and featuring relevant block diagrams, circuit diagrams, valuable and interesting solved examples, and important test questions. Further, the book includes up-to-date illustrations, exercises, and numerous worked examples to illustrate the theory and to demonstrate their use in practical designs.
This book is based on the 18 tutorials presented during the 28th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including next-generation analog-to-digital converters , high-performance power management systems and technology considerations for advanced IC design. For anyone involved in analog circuit research and development, this book will be a valuable summary of the state-of-the-art in these areas. Provides a summary of the state-of-the-art in analog circuit design, written by experts from industry and academia; Presents material in a tutorial-based format; Includes coverage of next-generation analog-to-digital converters, high-performance power management systems, and technology considerations for advanced IC design.
The book focuses on system dependability modeling and calculation, considering the impact of s-dependency and uncertainty. The best suited approaches for practical system dependability modeling and calculation, (1) the minimal cut approach, (2) the Markov process approach, and (3) the Markov minimal cut approach as a combination of (1) and (2) are described in detail and applied to several examples. The stringently used Boolean logic during the whole development process of the approaches is the key for the combination of the approaches on a common basis. For large and complex systems, efficient approximation approaches, e.g. the probable Markov path approach, have been developed, which can take into account s-dependencies be-tween components of complex system structures. A comprehensive analysis of aleatory uncertainty (due to randomness) and epistemic uncertainty (due to lack of knowledge), and their combination, developed on the basis of basic reliability indices and evaluated with the Monte Carlo simulation method, has been carried out. The uncertainty impact on system dependability is investigated and discussed using several examples with different levels of difficulty. The applications cover a wide variety of large and complex (real-world) systems. Actual state-of-the-art definitions of terms of the IEC 60050-192:2015 standard, as well as the dependability indices, are used uniformly in all six chapters of the book.
This comprehensive guide to fan-out wafer-level packaging (FOWLP) technology compares FOWLP with flip chip and fan-in wafer-level packaging. It presents the current knowledge on these key enabling technologies for FOWLP, and discusses several packaging technologies for future trends. The Taiwan Semiconductor Manufacturing Company (TSMC) employed their InFO (integrated fan-out) technology in A10, the application processor for Apple's iPhone, in 2016, generating great excitement about FOWLP technology throughout the semiconductor packaging community. For many practicing engineers and managers, as well as scientists and researchers, essential details of FOWLP - such as the temporary bonding and de-bonding of the carrier on a reconstituted wafer/panel, epoxy molding compound (EMC) dispensing, compression molding, Cu revealing, RDL fabrication, solder ball mounting, etc. - are not well understood. Intended to help readers learn the basics of problem-solving methods and understand the trade-offs inherent in making system-level decisions quickly, this book serves as a valuable reference guide for all those faced with the challenging problems created by the ever-increasing interest in FOWLP, helps to remove roadblocks, and accelerates the design, materials, process, and manufacturing development of key enabling technologies for FOWLP.
This book integrates analytical and digital solutions through Alternative Transients Program (ATP) software, recognized for its use all over the world in academia and in the electric power industry, utilizing a didactic approach appropriate for graduate students and industry professionals alike. This book presents an approach to solving singular-function differential equations representing the transient and steady-state dynamics of a circuit in a structured manner, and without the need for physical reasoning to set initial conditions to zero plus (0+). It also provides, for each problem presented, the exact analytical solution as well as the corresponding digital solution through a computer program based on the Electromagnetics Transients Program (EMTP). Of interest to undergraduate and graduate students, as well as industry practitioners, this book fills the gap between classic works in the field of electrical circuits and more advanced works in the field of transients in electrical power systems, facilitating a full understanding of digital and analytical modeling and solution of transients in basic circuits.
Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.
This book presents design methods and considerations for digitally-assisted wideband millimeter-wave transmitters. It addresses comprehensively both RF design and digital implementation simultaneously, in order to design energy- and cost-efficient high-performance transmitters for mm-wave high-speed communications. It covers the complete design flow, from link budget assessment to the transistor-level design of different RF front-end blocks, such as mixers and power amplifiers, presenting different alternatives and discussing the existing trade-offs. The authors also analyze the effect of the imperfections of these blocks in the overall performance, while describing techniques to correct and compensate for them digitally. Well-known techniques are revisited, and some new ones are described, giving examples of their applications and proving them in real integrated circuits.
This is the only book on the market that has been conceived and
deliberately written as a one-semester text on basic electric
circuit theory. As such, this book employs a novel approach to the
exposition of the material in which phasors and ac steady-state
analysis are introduced at the beginning. This allows one to use
phasors in the discussion of transients excited by ac sources,
which makes the presentation of transients more comprehensive and
meaningful. Furthermore, the machinery of phasors paves the road to
the introduction of transfer functions, which are then used in the
analysis of transients and the discussion of Bode plots and
filters. Another salient feature of the text is the consolidation
into one chapter of the material concerned with dependent sources
and operational amplifiers. Dependent sources are introduced as
linear models for transistors on the basis of small signal
analysis. In the text, PSpice simulations are prominently featured
to reinforce the basic material and understanding of circuit
analysis. |
![]() ![]() You may like...
Applied Semi-Markov Processes
Jacques Janssen, Raimondo Manca
Hardcover
R3,553
Discovery Miles 35 530
Metrical Theory of Continued Fractions
M. Iosifescu, Cor Kraaikamp
Hardcover
R3,109
Discovery Miles 31 090
New Perspectives Microsoft (R)Office 365…
Mark Shellman, Sasha Vodnik
Paperback
Rough Computing - Theories, Technologies…
Aboul Ella Hassanien, Zbigniew Suraj, …
Hardcover
R4,951
Discovery Miles 49 510
Index Data Structures in Object-Oriented…
Thomas A. Mueck, Martin L. Polaschek
Hardcover
R4,452
Discovery Miles 44 520
|