![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
This comprehensive handbook provides readers with a single-source reference to the theoretical fundamentals, physical mechanisms and principles of operation of all known microwave devices and various radars. The author discusses proven methods of computation and design development, process, schematic, schematic-technical and construction peculiarities of each breed of the microwave devices, as well as the most popular and original technical solutions for radars. Coverage also includes the history of creation of the most widely used radars, as well as guidelines for their potential upgrading. Offers readers a comprehensive, systematized view of all contemporary knowledge, acquired during the last 20 years, on radars and related disciplines; Provides a single-source reference on the physical mechanisms and principles of operation of the basic components of radio location devices, including theoretical aspects of designing the necessary, high-efficiency electronic devices and systems, as well as key, practical methods of computation and design; Presents complex topics using simple language, minimizing mathematics.
This textbook teaches students techniques for the design of advanced digital systems using Field Programmable Gate Arrays (FPGAs). The authors focus on communication between FPGAs and peripheral devices (such as EEPROM, analog-to-digital converters, sensors, digital-to-analog converters, displays etc.) and in particular state machines and timed state machines for the implementation of serial communication protocols, such as UART, SPI, I(2)C, and display protocols, such as VGA, HDMI. VHDL is used as the programming language and all topics are covered in a structured, step-by-step manner.
Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of
Electrical and Computer Engineering of College of Engineering,
University of Arizona, with a joint appointment in the College of
Optical Sciences. Prior to this appointment in August 2006, he was
with University of Arizona, Tucson, USA (as a Research Assistant
Professor); University of the West of England, Bristol, UK;
University of Bristol, Bristol, UK; Tyco Telecommunications,
Eatontown, USA; and National Technical University of Athens,
Athens, Greece. His current research interests include optical
networks, error control coding, constrained coding, coded
modulation, turbo equalization, OFDM applications, and quantum
error correction. He presently directs the Optical Communications
Systems Laboratory (OCSL) within the ECE Department at the
University of Arizona.
VLSI, or Very-Large-Scale-Integration, is the practice of combining billions of transistors to create an integrated circuit. At present, VLSI circuits are realised using CMOS technology. However, the demand for ever smaller, more efficient circuits is now pushing the limits of CMOS. Post-CMOS refers to the possible future digital logic technologies beyond the CMOS scaling limits. This 2-volume set addresses the current state of the art in VLSI technologies and presents potential options for post-CMOS processes. VLSI and Post-CMOS Electronics is a useful reference guide for researchers, engineers and advanced students working in the area of design and modelling of VLSI and post-CMOS devices and their circuits. Volume 1 focuses on design, modelling and simulation, including applications in low voltage and low power VLSI, and post-CMOS devices and circuits. Volume 2 addresses a wide range of devices, circuits and interconnects.
This book provides comprehensive coverage of various Cryptography topics, while highlighting the most recent trends such as quantum, blockchain, lightweight, Chaotic and DNA cryptography. Moreover, this book covers cryptography primitives and its usage and applications and focuses on the fundamental principles of modern cryptography such as Stream Ciphers, block ciphers, public key algorithms and digital signatures. Readers will gain a solid foundation in cryptography and security. This book presents the fundamental mathematical concepts of cryptography. Moreover, this book presents hiding data techniques such as steganography and watermarking. The author also provides a comparative study of the different cryptographic methods, which can be used to solve security problems.
This book is based on the 18 presentations during the 21st workshop on Advances in Analog Circuit Design. Expert designers provide readers with information about a variety of topics at the frontier of analog circuit design, including Nyquist analog-to-digital converters, capacitive sensor interfaces, reliability, variability, and connectivity. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development. "
VLSI, or Very-Large-Scale-Integration, is the practice of combining billions of transistors to create an integrated circuit. At present, VLSI circuits are realised using CMOS technology. However, the demand for ever smaller, more efficient circuits is now pushing the limits of CMOS. Post-CMOS refers to the possible future digital logic technologies beyond the CMOS scaling limits. This 2-volume set addresses the current state of the art in VLSI technologies and presents potential options for post-CMOS processes. VLSI and Post-CMOS Electronics is a useful reference guide for researchers, engineers and advanced students working in the area of design and modelling of VLSI and post-CMOS devices and their circuits. Volume 1 focuses on design, modelling and simulation, including applications in low voltage and low power VLSI, and post-CMOS devices and circuits. Volume 2 addresses a wide range of devices, circuits and interconnects.
This book presents high-quality papers from the Fifth International Conference on Microelectronics, Computing & Communication Systems (MCCS 2020). It discusses the latest technological trends and advances in MEMS and nanoelectronics, wireless communication, optical communication, instrumentation, signal processing, image processing, bioengineering, green energy, hybrid vehicles, environmental science, weather forecasting, cloud computing, renewable energy, RFID, CMOS sensors, actuators, transducers, telemetry systems, embedded systems and sensor network applications. It includes papers based on original theoretical, practical and experimental simulations, development, applications, measurements and testing. The applications and solutions discussed here provide excellent reference material for future product development.
Electronic oscillators using an electromechanical device as a frequency reference are irreplaceable components of systems-on-chip for time-keeping, carrier frequency generation and digital clock generation. With their excellent frequency stability and very large quality factor Q, quartz crystal resonators have been the dominant solution for more than 70 years. But new possibilities are now offered by micro-electro-mechanical (MEM) resonators, that have a qualitatively identical equivalent electrical circuit. Low-Power Crystal and MEMS Oscillators concentrates on the analysis and design of the most important schemes of integrated oscillator circuits. It explains how these circuits can be optimized by best exploiting the very high Q of the resonator to achieve the minimum power consumption compatible with the requirements on frequency stability and phase noise. The author has 40 years of experience in designing very low-power, high-performance quartz oscillators for watches and other battery operated systems and has accumulated most of the material during this period. Some additional original material related to phase noise has been added. The explanations are mainly supported by analytical developments, whereas computer simulation is limited to numerical examples. The main part is dedicated to the most important Pierce circuit, with a full design procedure illustrated by examples. Symmetrical circuits that became popular for modern telecommunication systems are analyzed in a last chapter.
Omnidirectional antenna with high gain, low profile, vertical polarization, even CP polarization is very difficult to design, although it is from the dipole. In this book, a novel idea that the running wave in the coaxial wire is disturbed by the orthogonal slot array on the cylindrical metal shell is introduced, which radiates the CP wave in omni-direction. When feeding on two ends of the coaxial wire respectively, there will appear left hand circularly polarized (LHCP) omnidirectional radiation or right hand circularly polarized (RHCP) omnidirectional radiation. By introducing the T-shaped feed structure, the coaxial wire with slot array can conveniently produce the LHCP and RHCP radiation diversity with one end feeding. In the further, combining with the directional antenna, it will generate the pattern diversity in the half-sphere space. The antenna of the coaxial wire with slot array can further transform into conical CP beam antenna if the coaxial wire becomes into a conical frustum. By introducing the PIN diode into the slot, the antenna of the coaxial wire with slot array can radiate the reconfigurable directional beam by switching the states of the PIN diodes. By introducing a novel switchable microwave circuit, the omnidirectional /directional pattern switchable antenna can be realized easily.This book proposes a continues method to develop the potentialities of the omnidirectional antenna. And the readers can study the method or ideas of the omnidirectional slots antenna, even graft the CP or diversity methods to other antennae.
This book offers a comprehensive reference guide for graduate students and professionals in both academia and industry, covering the fundamentals, architecture, processing details, and applications of 3D microelectronic packaging. It provides readers an in-depth understanding of the latest research and development findings regarding this key industry trend, including TSV, die processing, micro-bumps for LMI and MMI, direct bonding and advanced materials, as well as quality, reliability, fault isolation, and failure analysis for 3D microelectronic packages. Images, tables, and didactic schematics are used to illustrate and elaborate on the concepts discussed. Readers will gain a general grasp of 3D packaging, quality and reliability concerns, and common causes of failure, and will be introduced to developing areas and remaining gaps in 3D packaging that can help inspire future research and development.
This handbook gives readers a close look at the entire technology
of printing very high resolution and high density integrated
circuit (IC) patterns into thin resist process transfer coatings--
including optical lithography, electron beam, ion beam, and x-ray
lithography. The book's main theme is the special printing process
needed to achieve volume high density IC chip production,
especially in the Dynamic Random Access Memory (DRAM) industry.
This book is a collection of papers presented at the International Conference on Renewable Power (ICRP 2020), held during 13-14 July 2020 in Rajouri, Jammu, India. The book covers different topics of renewable energy sources in modern power systems. The book focusses on smart grid technologies and applications, renewable power systems including solar PV, solar thermal, wind, power generation, transmission and distribution, transportation electrification and automotive technologies, power electronics and applications in renewable power system, energy management and control system, energy storage in modern power system, active distribution network, artificial intelligence in renewable power systems, and cyber-physical systems and Internet of things in smart grid and renewable power.
This book presents Dual Mode Logic (DML), a new design paradigm for digital integrated circuits. DML logic gates can operate in two modes, each optimized for a different metric. Its on-the-fly switching between these operational modes at the gate, block and system levels provide maximal E-D optimization flexibility. Each highly detailed chapter has multiple illustrations showing how the DML paradigm seamlessly implements digital circuits that dissipate less energy while simultaneously improving performance and reducing area without a significant compromise in reliability. All the facets of the DML methodology are covered, starting from basic concepts, through single gate optimization, general module optimization, design trade-offs and new ways DML can be integrated into standard design flows using standard EDA tools. DML logic is compatible with numerous applications but is particularly advantageous for ultra-low power, reliable high performance systems, and advanced scaled technologies Written in language accessible to students and design engineers, each topic is oriented toward immediate application by all those interested in an alternative to CMOS logic. Describes a novel, promising alternative to conventional CMOS logic, known as Dual Mode Logic (DML), with which a single gate can be operated selectively in two modes, each optimized for a different metric (e.g., energy consumption, performance, size); Demonstrates several techniques at the architectural level, which can result in high energy savings and improved system performance; Focuses on the tradeoffs between power, area and speed including optimizations at the transistor and gate level, including alternatives to DML basic cells; Illustrates DML efficiency for a variety of VLSI applications.
This book contains stories of women engineers' paths through the golden age of microelectronics, stemming from the invention of the transistor in 1947. These stories, like the biographies of Marie Curie and the National Geographic's stories of Jane Goodall's research that inspired the authors will inspire and guide readers along unconventional pathways to contributions to microelectronics that we can only begin to imagine. The book explores why and how the women writing here chose their career paths and how they navigated their careers. This topic is of interest to a vast audience, from students to professionals to university advisers to industry CEOs, who can imagine the advantages of a future with a diverse work force. Provides insight into women's early contributions to the field of microelectronics and celebrates the challenges they overcame; Presents compelling innovations from academia, research, and industry into advances, applications, and the future of microelectronics; Includes a fascinating look into topics such as nanotechnologies, video games, analog electronics, design automation, and neuromorphic circuits.
This book covers selected topics of automated logic synthesis dedicated to FPGAs. The authors focused on two main problems: decomposition of the multioutput functions and technology mapping. Additionally, the idea of using binary decision diagrams (BDD) in these processes was presented. The book is a scientific monograph summarizing the authors' many years of research. As a result, it contains a large number of experimental results, which makes it a valuable source for other researchers. The book has a significant didactic value. Its arrangement allows for a gradual transition from basic things (e.g., description of logic functions) to much more complex issues. This approach allows less advanced readers to better understand the described problems. In addition, the authors made sure that the issues described in the book were supported by practical examples, thanks to which the reader can independently analyze even the most complex problems described in the book.
This book features selected papers presented at the Fifth International Conference on Nanoelectronics, Circuits and Communication Systems (NCCS 2019). It covers a range of topics, including nanoelectronic devices, microelectronics devices, material science, machine learning, Internet of things, cloud computing, computing systems, wireless communication systems, advances in communication 5G and beyond. Further, it discusses VLSI circuits and systems, MEMS, IC design and testing, electronic system design and manufacturing, speech signal processing, digital signal processing, FPGA-based wireless communication systems and FPGA-based system design, Industry 4.0, e-farming, semiconductor memories, and IC fault detection and correction.
This book discusses the advantages and challenges of Body-Biasing for integrated circuits and systems, together with the deployment of the design infrastructure needed to generate this Body-Bias voltage. These new design solutions enable state of the art energy efficiency and system flexibility for the latest applications, such as Internet of Things and 5G communications.
This book provides a single-source reference on carbon nanotubes for interconnect applications. It presents the recent advances in modelling and challenges of carbon nanotube (CNT)-based VLSI interconnects. Starting with a background of carbon nanotubes and interconnects, this book details various aspects of CNT interconnect models, the design metrics of CNT interconnects, crosstalk analysis of recently proposed CNT interconnect structures, and geometries. Various topics covered include the use of semiconducting CNTs around metallic CNTs, CNT interconnects with air gaps, use of emerging ultra low-k materials and their integration with CNT interconnects, and geometry-based crosstalk reduction techniques. This book will be useful for researchers and design engineers working on carbon nanotubes for interconnects for both 2D and 3D integrated circuits.
This book presents theory, design methods and novel applications for integrated circuits for analog signal processing. The discussion covers a wide variety of active devices, active elements and amplifiers, working in voltage mode, current mode and mixed mode. This includes voltage operational amplifiers, current operational amplifiers, operational transconductance amplifiers, operational transresistance amplifiers, current conveyors, current differencing transconductance amplifiers, etc. Design methods and challenges posed by nanometer technology are discussed and applications described, including signal amplification, filtering, data acquisition systems such as neural recording, sensor conditioning such as biomedical implants, actuator conditioning, noise generators, oscillators, mixers, etc. Presents analysis and synthesis methods to generate all circuit topologies from which the designer can select the best one for the desired application; Includes design guidelines for active devices/elements with low voltage and low power constraints;Offers guidelines for selecting the right active devices/elements in the design of linear and nonlinear circuits;Discusses optimization of the active devices/elements for process and manufacturing issues of nanometer technology."
This peer-reviewed book explores the methodologies that are used for effective research, design and innovation in the vast field of millimeter-wave circuits, and describes how these have to be modified to fit the uniqueness of high-frequency nanoelectronics design. Each chapter focuses on a specific research challenge related to either small form factors or higher operating frequencies. The book first examines nanodevice scaling and the emerging electronic design automation tools that can be used in millimeter-wave research, as well as the singular challenges of combining deep-submicron and millimeter-wave design. It also demonstrates the importance of considering, in the millimeter-wave context, system-level design leading to differing packaging options. Further, it presents integrated circuit design methodologies for all major transceiver blocks typically employed at millimeter-wave frequencies, as these methodologies are normally fundamentally different from the traditional design methodologies used in analogue and lower-frequency electronics. Lastly, the book discusses the methodologies of millimeter-wave research and design for extreme or harsh environments, rebooting electronics, the additional opportunities for terahertz research, and the main differences between the approaches taken in millimeter-wave research and terahertz research.
This book presents the basics of superconductivity and applications of superconducting magnets. It explains the phenomenon of superconductivity, describes theories of superconductivity, and discusses type II and high-temperature cuprate superconductors. The main focus of the book is the application of superconducting magnets in accelerators, fusion reactors and other advanced applications such as nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), high-gradient magnetic separation (HGMS), and superconducting magnetic energy storage (SMES). This new and significantly extended second edition covers the state of the art in the development of novel superconductors for advanced magnet applications, as well as the production of practical superconducting wires, tapes, and ultra high current cables used for high-field magnets. It includes two new chapters each devoted to MgB2 and Fe-based superconductors, and discusses the recently developed and world record-setting 45.5-Tesla magnetic field generated by a combination of conventional and high-temperature cuprate superconducting magnets. In addition, it discusses the status and outlook of all current and future nuclear fusion reactors worldwide. The chapter on accelerators includes the ongoing efforts to build high luminosity LHC (HL-LHC), the high-energy 28 TeV LHC (HE-LHC), the future circular collider (FCC) at CERN, and the just launched electro-ion collider (EIC) at Brookhaven National Laboratory. The book is based on the long-standing experience of the author in studying superconducting materials, building magnets and delivering numerous lectures to research scholars and students. The book provides comprehensive and fundamental knowledge in the field of applied superconductivity, greatly benefiting researchers and graduate students wishing to learn more about the various aspects of superconductivity and advanced magnet applications.
This book is a technical publication for students, scholars and engineers in electrical engineering, focusing on the pulse-width-modulation (PWM) technologies in power electronics area. Based on an introduction of basic PWM principles this book analyzes three major challenges for PWM on system performance: power losses, voltage/current ripple and electromagnetic interference (EMI) noise, and the lack of utilization of control freedoms in conventional PWM technologies. Then, the model of PWM's impact on system performance is introduced, with the current ripple prediction method for voltage source converter as example. With the prediction model, two major advanced PWM methods are introduced: variable switching frequency PWM and phase-shift PWM, which can reduce the power losses and EMI for the system based on the prediction model. Furthermore, the advanced PWM can be applied in advanced topologies including multilevel converters and paralleled converters. With more control variables in the advanced topologies, performance of PWM can be further improved. Also, for the special problem for common-mode noise, this book introduces modified PWM method for reduction. Especially, the paralleled inverters with advanced PWM can achieve good performance for the common-mode noise reduction. Finally, the implementation of PWM technologies in hardware is introduced in the last part. |
![]() ![]() You may like...
Frontiers in the Science and Technology…
Guneri Akovali, Carlos A. Bernardo, …
Hardcover
R5,870
Discovery Miles 58 700
Digital Image and Video Watermarking and…
Sudhakar Ramakrishnan
Hardcover
R2,763
Discovery Miles 27 630
Seminal Contributions to Modelling and…
Khalid Al-Begain, Andrzej Bargiela
Hardcover
R3,526
Discovery Miles 35 260
Analyzing Emotion in Spontaneous Speech
Rupayan Chakraborty, Meghna Pandharipande, …
Hardcover
R1,521
Discovery Miles 15 210
Landscape Simulation Modeling - A…
Robert Costanza, Alexey Voinov
Hardcover
R1,572
Discovery Miles 15 720
|