Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Computer hardware & operating systems > Computer architecture & logic design
This book describes novel software concepts to increase reliability under user-defined constraints. The authors' approach bridges, for the first time, the reliability gap between hardware and software. Readers will learn how to achieve increased soft error resilience on unreliable hardware, while exploiting the inherent error masking characteristics and error (stemming from soft errors, aging, and process variations) mitigations potential at different software layers.
This book provides comprehensive coverage of Network-on-Chip (NoC) security vulnerabilities and state-of-the-art countermeasures, with contributions from System-on-Chip (SoC) designers, academic researchers and hardware security experts. Readers will gain a clear understanding of the existing security solutions for on-chip communication architectures and how they can be utilized effectively to design secure and trustworthy systems.
The series covers new developments in computer technology. Most
chapters present an overview of a current subfield within computer
science, with many citations, and often include new developments in
the field by the authors of the individual chapters. Topics include
hardware, software, theoretical underpinnings of computing, and
novel applications of computers. This current volume emphasizes
architectural issues in the design of new hardware and software
system. An architectural design evaluation process is described
that allows developers to make sure that their source programs
adhere to the architectural design of the specifications. This
greatly aids in the maintenance of the system. Telecommunications
issues are covered from the impact of new technology to security of
wireless systems. Quantum computing, an exciting development that
may greatly increase the speed of present computers, is described.
Aimed at electronics industry professionals, this 4th edition of the Boundary Scan Handbook describes recent changes to the IEEE1149.1 Standard Test Access Port and Boundary-Scan Architecture. This updated edition features new chapters on the possible effects of the changes on the work of the practicing test engineers and the new 1149.8.1 standard. Anyone needing to understand the basics of boundary scan and its practical industrial implementation will need this book. Provides an overview of the recent changes to the 1149.1 standard and the effect of the changes on the work of test engineers; Explains the new IEEE 1149.8.1 subsidiary standard and applications; Describes the latest updates on the supplementary IEEE testing standards. In particular, addresses: IEEE Std 1149.1 Digital Boundary-ScanIEEE Std 1149.4 Analog Boundary-ScanIEEE Std 1149.6 Advanced I/O TestingIEEE Std 1149.8.1 Passive Component TestingIEEE Std 1149.1-2013 The 2013 Revision of 1149.1IEEE Std 1532 In-System ConfigurationIEEE Std 1149.6-2015 The 2015 Revision of 1149.6
This book describes several techniques to address variation-related design challenges for analog blocks in mixed-signal systems-on-chip. The methods presented are results from recent research works involving receiver front-end circuits, baseband filter linearization, and data conversion. These circuit-level techniques are described, with their relationships to emerging system-level calibration approaches, to tune the performances of analog circuits with digital assistance or control. Coverage also includes a strategy to utilize on-chip temperature sensors to measure the signal power and linearity characteristics of analog/RF circuits, as demonstrated by test chip measurements. Describes a variety of variation-tolerant analog circuit design examples, including from RF front-ends, high-performance ADCs and baseband filters;Includes built-in testing techniques, linked to current industrial trends;Balances digitally-assisted performance tuning with analog performance tuning and mismatch reduction approaches;Describes theoretical concepts as well as experimental results for test chips designed with variation-aware techniques."
This book provides an overview of and essential insights on invasive computing. Pursuing a comprehensive approach, it addresses proper concepts, invasive language constructs, and the principles of invasive hardware. The main focus is on the important topic of how to map task-parallel applications to future multi-core architectures including 1,000 or more processor units. A special focus today is the question of how applications can be mapped onto such architectures while not only taking into account functional correctness, but also non-functional execution properties such as execution times and security properties. The book provides extensive experimental evaluations, investigating the benefits of applying invasive computing and hybrid application mapping to give guarantees on non-functional properties such as timing, energy, and security. The techniques in this book are presented in a step-by-step manner, supported by examples and figures. All proposed ideas for providing guarantees on performance, energy consumption, and security are enabled by using the concept of invasive computing and the exclusive usage of resources.
The pillars of the bridge on the cover of this book date from the Roman Empire and they are in daily use today, an example of conventional engineering at its best. Modern commodity operating systems are examples of current system programming at its best, with bugs discovered and fixed on a weekly or monthly basis. This book addresses the question of whether it is possible to construct computer systems that are as stable as Roman designs. The authors successively introduce and explain specifications, constructions and correctness proofs of a simple MIPS processor; a simple compiler for a C dialect; an extension of the compiler handling C with inline assembly, interrupts and devices; and the virtualization layer of a small operating system kernel. A theme of the book is presenting system architecture design as a formal discipline, and in keeping with this the authors rely on mathematics for conciseness and precision of arguments to an extent common in other engineering fields. This textbook is based on the authors' teaching and practical experience, and it is appropriate for undergraduate students of electronics engineering and computer science. All chapters are supported with exercises and examples.
This book introduces a generic and systematic design-time/run-time methodology for handling the dynamic nature of modern embedded systems, without adding large safety margins in the design. The techniques introduced can be utilized on top of most existing static mapping methodologies to deal effectively with dynamism and to increase drastically their efficiency. This methodology is based on the concept of system scenarios, which group system behaviors that are similar from a multi-dimensional cost perspective, such as resource requirements, delay, and energy consumption. Readers will be enabled to design systems capable to adapt to current inputs, improving system quality and/or reducing cost, possibly learning on-the-fly during execution. Provides an effective solution to deal with dynamic system design Includes a broad survey of the state-of-the-art approaches in this domain Enables readers to design for substantial cost improvements (e.g. energy reductions), by exploiting system scenarios Demonstrates how the methodology has been applied effectively on various, real design problems in the embedded system context
This book focuses on the development of 3D design and implementation methodologies for Tree-based FPGA architecture. It also stresses the needs for new and augmented 3D CAD tools to support designs such as, the design for 3D, to manufacture high performance 3D integrated circuits and reconfigurable FPGA-based systems. This book was written as a text that covers the foundations of 3D integrated system design and FPGA architecture design. It was written for the use in an elective or core course at the graduate level in field of Electrical Engineering, Computer Engineering and Doctoral Research programs. No previous background on 3D integration is required, nevertheless fundamental understanding of 2D CMOS VLSI design is required. It is assumed that reader has taken the core curriculum in Electrical Engineering or Computer Engineering, with courses like CMOS VLSI design, Digital System Design and Microelectronics Circuits being the most important. It is accessible for self-study by both senior students and professionals alike.
This book presents a new FPGA architecture known as tree-based FPGA architecture, due to its hierarchical nature. This type of architecture has been relatively unexplored despite their better performance and predictable routing behavior, as compared to mesh-based FPGA architectures. In this book, we explore and optimize the tree-based architecture and we evaluate it by comparing it to equivalent mesh-based FPGA architectures.
Most emerging applications in imaging and machine learning must perform immense amounts of computation while holding to strict limits on energy and power. To meet these goals, architects are building increasingly specialized compute engines tailored for these specific tasks. The resulting computer systems are heterogeneous, containing multiple processing cores with wildly different execution models. Unfortunately, the cost of producing this specialized hardware-and the software to control it-is astronomical. Moreover, the task of porting algorithms to these heterogeneous machines typically requires that the algorithm be partitioned across the machine and rewritten for each specific architecture, which is time consuming and prone to error. Over the last several years, the authors have approached this problem using domain-specific languages (DSLs): high-level programming languages customized for specific domains, such as database manipulation, machine learning, or image processing. By giving up generality, these languages are able to provide high-level abstractions to the developer while producing high-performance output. The purpose of this book is to spur the adoption and the creation of domain-specific languages, especially for the task of creating hardware designs. In the first chapter, a short historical journey explains the forces driving computer architecture today. Chapter 2 describes the various methods for producing designs for accelerators, outlining the push for more abstraction and the tools that enable designers to work at a higher conceptual level. From there, Chapter 3 provides a brief introduction to image processing algorithms and hardware design patterns for implementing them. Chapters 4 and 5 describe and compare Darkroom and Halide, two domain-specific languages created for image processing that produce high-performance designs for both FPGAs and CPUs from the same source code, enabling rapid design cycles and quick porting of algorithms. The final section describes how the DSL approach also simplifies the problem of interfacing between application code and the accelerator by generating the driver stack in addition to the accelerator configuration. This book should serve as a useful introduction to domain-specialized computing for computer architecture students and as a primer on domain-specific languages and image processing hardware for those with more experience in the field.
This book explores energy efficiency techniques for high-performance computing (HPC) systems using power-management methods. Adopting a step-by-step approach, it describes power-management flows, algorithms and mechanism that are employed in modern processors such as Intel Sandy Bridge, Haswell, Skylake and other architectures (e.g. ARM). Further, it includes practical examples and recent studies demonstrating how modem processors dynamically manage wide power ranges, from a few milliwatts in the lowest idle power state, to tens of watts in turbo state. Moreover, the book explains how thermal and power deliveries are managed in the context this huge power range. The book also discusses the different metrics for energy efficiency, presents several methods and applications of the power and energy estimation, and shows how by using innovative power estimation methods and new algorithms modern processors are able to optimize metrics such as power, energy, and performance. Different power estimation tools are presented, including tools that break down the power consumption of modern processors at sub-processor core/thread granularity. The book also investigates software, firmware and hardware coordination methods of reducing power consumption, for example a compiler-assisted power management method to overcome power excursions. Lastly, it examines firmware algorithms for dynamic cache resizing and dynamic voltage and frequency scaling (DVFS) for memory sub-systems.
The Art of Timing Closure is written using a hands-on approach to describe advanced concepts and techniques using Multi-Mode Multi-Corner (MMMC) for an advanced ASIC design implementation. It focuses on the physical design, Static Timing Analysis (STA), formal and physical verification. The scripts in this book are based on Cadence (R) Encounter System (TM). However, if the reader uses a different EDA tool, that tool's commands are similar to those shown in this book. The topics covered are as follows: Data Structures Multi-Mode Multi-Corner Analysis Design Constraints Floorplan and Timing Placement and Timing Clock Tree Synthesis Final Route and Timing Design Signoff Rather than go into great technical depth, the author emphasizes short, clear descriptions which are implemented by references to authoritative manuscripts. It is the goal of this book to capture the essence of physical design and timing analysis at each stage of the physical design, and to show the reader that physical design and timing analysis engineering should be viewed as a single area of expertise. This book is intended for anyone who is involved in ASIC design implementation -- starting from physical design to final design signoff. Target audiences for this book are practicing ASIC design implementation engineers and students undertaking advanced courses in ASIC design.
This book highlights the complex issues, tasks and skills that must be mastered by an IP designer, in order to design an optimized and robust digital circuit to solve a problem. The techniques and methodologies described can serve as a bridge between specifications that are known to the designer and RTL code that is final outcome, reducing significantly the time it takes to convert initial ideas and concepts into right-first-time silicon. Coverage focuses on real problems rather than theoretical concepts, with an emphasis on design techniques across various aspects of chip-design.
This book examines research topics in IoT and Cloud and Fog computing. The contributors address major issues and challenges in IoT-based solutions proposed for the Cloud. The authors discuss Cloud smart and energy efficient services in applications such as healthcare, traffic, and farming systems. Targeted readers are from varying disciplines who are interested in designing and deploying the Cloud applications. The book can be helpful to Cloud-based IoT service providers, Cloud-based IoT service consumers, and Cloud service developers in general for getting the state-of-the-art knowledge in the emerging IoT area. The book also provides a strong foundation for researchers to advance further in this domain. Presents a variety of research related to IoT and Cloud computing; Provides the industry with new and innovative operational ideas; Pertinent to academics, researchers, and practitioners around the world.
This book summarizes the key scientific outcomes of the Horizon 2020 research project TULIPP: Towards Ubiquitous Low-power Image Processing Platforms. The main focus lies on the development of high-performance, energy-efficient embedded systems for the growing range of increasingly complex image processing applications. The holistic TULIPP approach is described in the book, which addresses hardware platforms, programming tools and embedded operating systems. Several of the results are available as open-source hardware/software for the community. The results are evaluated with several use cases taken from real-world applications in key domains such as Unmanned Aerial Vehicles (UAVs), robotics, space and medicine. Discusses the development of high-performance, energy-efficient embedded systems for the growing range of increasingly complex image processing applications; Covers the hardware architecture of embedded image processing systems, novel methods, tools and libraries for programming those systems as well as embedded operating systems to manage those systems; Demonstrates results with several challenging applications, such as medical systems, robotics, drones and automotive.
This book describes the various tradeoffs systems designers face when designing embedded memory. Readers designing multi-core systems and systems on chip will benefit from the discussion of different topics from memory architecture, array organization, circuit design techniques and design for test. The presentation enables a multi-disciplinary approach to chip design, which bridges the gap between the architecture level and circuit level, in order to address yield, reliability and power-related issues for embedded memory.
This volume provides a comprehensive state of the art overview of a series of advanced trends and concepts that have recently been proposed in the area of green information technologies engineering as well as of design and development methodologies for models and complex systems architectures and their intelligent components. The contributions included in the volume have their roots in the authors' presentations, and vivid discussions that have followed the presentations, at a series of workshop and seminars held within the international TEMPUS-project GreenCo project in United Kingdom, Italy, Portugal, Sweden and the Ukraine, during 2013-2015 and at the 1st - 5th Workshops on Green and Safe Computing (GreenSCom) held in Russia, Slovakia and the Ukraine. The book presents a systematic exposition of research on principles, models, components and complex systems and a description of industry- and society-oriented aspects of the green IT engineering. A chapter-oriented structure has been adopted for this book following a "vertical view" of the green IT, from hardware (CPU and FPGA) and software components to complex industrial systems. The 15 chapters of the book are grouped into five sections: (1) Methodology and Principles of Green IT Engineering for Complex Systems, (2) Green Components and Programmable Systems, (3) Green Internet Computing, Cloud and Communication Systems, (4) Modeling and Assessment of Green Computer Systems and Infrastructures, and (5) Gree
This book equips readers with tools for computer architecture of high performance, low power, and high reliability memory hierarchy in computer systems based on emerging memory technologies, such as STTRAM, PCM, FBDRAM, etc. The techniques described offer advantages of high density, near-zero static power, and immunity to soft errors, which have the potential of overcoming the "memory wall." The authors discuss memory design from various perspectives: emerging memory technologies are employed in the memory hierarchy with novel architecture modification; hybrid memory structure is introduced to leverage advantages from multiple memory technologies; an analytical model named "Moguls" is introduced to explore quantitatively the optimization design of a memory hierarchy; finally, the vulnerability of the CMPs to radiation-based soft errors is improved by replacing different levels of on-chip memory with STT-RAMs.
Responding to ever-escalating requirements for performance,
flexibility, and economy, the networking industry has opted to
build products around network processors. To help meet the
formidable challenges of this emerging field, the editors of this
volume created the first Workshop on Network Processors, a forum
for scientists and engineers to discuss latest research in the
architecture, design, programming, and use of these devices. This
series of volumes contains not only the results of the annual
workshops but also specially commissioned material that highlights
industry's latest network processors.
This monograph presents examples of best practices when combining bioinspired algorithms with parallel architectures. The book includes recent work by leading researchers in the field and offers a map with the main paths already explored and new ways towards the future. Parallel Architectures and Bioinspired Algorithms will be of value to both specialists in Bioinspired Algorithms, Parallel and Distributed Computing, as well as computer science students trying to understand the present and the future of Parallel Architectures and Bioinspired Algorithms.
In the past two decades, breakthroughs in computer technology have made a tremendous impact on optimization. In particular, availability of parallel computers has created substantial interest in exploring the use of parallel processing for solving discrete and global optimization problems. The chapters in this volume cover a broad spectrum of recent research in parallel processing of discrete and related problems. The topics discussed include distributed branch-and-bound algorithms, parallel genetic algorithms for large scale discrete problems, simulated annealing, parallel branch-and-bound search under limited-memory constraints, parallelization of greedy randomized adaptive search procedures, parallel optical models of computing, randomized parallel algorithms, general techniques for the design of parallel discrete algorithms, parallel algorithms for the solution of quadratic assignment and satisfiability problems. The book will be a valuable source of information to faculty, students and researchers in combinatorial optimization and related areas.
This book presents techniques for energy reduction in adaptive embedded multimedia systems, based on dynamically reconfigurable processors. The approach described will enable designers to meet performance/area constraints, while minimizing video quality degradation, under various, run-time scenarios. Emphasis is placed on implementing power/energy reduction at various abstraction levels. To enable this, novel techniques for adaptive energy management at both processor architecture and application architecture levels are presented, such that both hardware and software adapt together, minimizing overall energy consumption under unpredictable, design-/compile-time scenarios.
This book describes innovative techniques to address the testing
needs of 3D stacked integrated circuits (ICs) that utilize
through-silicon-vias (TSVs) as vertical interconnects. The authors
identify the key challenges facing 3D IC testing and present
results that have emerged from cutting-edge research in this
domain. Coverage includes topics ranging from die-level wrappers,
self-test circuits, and TSV probing to test-architecture design,
test scheduling, and optimization. Readers will benefit from an
in-depth look at test-technology solutions that are needed to make
3D ICs a reality and commercially viable. |
You may like...
Grammatical and Syntactical Approaches…
Juhyun Lee, Michael J. Ostwald
Hardcover
R5,608
Discovery Miles 56 080
Artificial Intelligence - Concepts…
Information Reso Management Association
Hardcover
R9,560
Discovery Miles 95 600
Novel Approaches to Information Systems…
Naveen Prakash, Deepika Prakash
Hardcover
R6,253
Discovery Miles 62 530
Energy-Efficient Communication…
Robert Fasthuber, Francky Catthoor, …
Hardcover
Edsger Wybe Dijkstra - His Life, Work…
Krzysztof R. Apt, Tony Hoare
Hardcover
R3,075
Discovery Miles 30 750
|