![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer hardware & operating systems > Computer architecture & logic design
This book presents a wide-band and technology independent, SPICE-compatible RLC model for through-silicon vias (TSVs) in 3D integrated circuits. This model accounts for a variety of effects, including skin effect, depletion capacitance and nearby contact effects. Readers will benefit from in-depth coverage of concepts and technology such as 3D integration, Macro modeling, dimensional analysis and compact modeling, as well as closed form equations for the through silicon via parasitics. Concepts covered are demonstrated by using TSVs in applications such as a spiral inductorand inductive-based communication system and bandpass filtering."
This book describes analytical models and estimation methods to enhance performance estimation of pipelined multiprocessor systems-on-chip (MPSoCs). A framework is introduced for both design-time and run-time optimizations. For design space exploration, several algorithms are presented to minimize the area footprint of a pipelined MPSoC under a latency or a throughput constraint. A novel adaptive pipelined MPSoC architecture is described, where idle processors are transitioned into low-power states at run-time to reduce energy consumption. Multi-mode pipelined MPSoCs are introduced, where multiple pipelined MPSoCs optimized separately are merged into a single pipelined MPSoC, enabling further reduction of the area footprint by sharing the processors and communication buffers. Readers will benefit from the authors' combined use of analytical models, estimation methods and exploration algorithms and will be enabled to explore billions of design points in a few minutes.
With the fast pace of change in today's business environment, the need to transform organizations into agile enterprises that can respond quickly to change has never been greater. Methods and computer technologies are needed to enable rapid business and system change, and this practical book shows professionals how to achieve this agility. The solution lies in Enterprise Integration (both business and technology integration). For business integration, the book explains how to use enterprise architecture methods to integrate data, processes, locations, people, events and business plans throughout an organization.
The book covers a range of topics dealing with emerging computing technologies which are being developed in response to challenges faced due to scaling CMOS technologies. It provides a sneak peek into the capabilities unleashed by these technologies across the complete system stack, with contributions by experts discussing device technology, circuit, architecture and design automation flows. Presenting a gradual progression of the individual sub-domains and the open research and adoption challenges, this book will be of interest to industry and academic researchers, technocrats and policymakers. Chapters "Innovative Memory Architectures Using Functionality Enhanced Devices" and "Intelligent Edge Biomedical Sensors in the Internet of Things (IoT) Era" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book discusses the implementation of digital circuits by using MCML gates. Although digital circuit implementation is possible with other elements, such as CMOS gates, MCML implementations can provide superior performance in certain applications. This book provides a complete automation methodology for the implementation of digital circuits in MCML and provides an extensive explanation on the technical details of design of MCML. A systematic methodology is presented to build efficient MCML standard-cell libraries, and a complete top-down design flow is shown to implement complex systems using such building blocks.
High Performance Computational Methods for Biological Sequence Analysis presents biological sequence analysis using an interdisciplinary approach that integrates biological, mathematical and computational concepts. These concepts are presented so that computer scientists and biomedical scientists can obtain the necessary background for developing better algorithms and applying parallel computational methods. This book will enable both groups to develop the depth of knowledge needed to work in this interdisciplinary field. This work focuses on high performance computational approaches that are used to perform computationally intensive biological sequence analysis tasks: pairwise sequence comparison, multiple sequence alignment, and sequence similarity searching in large databases. These computational methods are becoming increasingly important to the molecular biology community allowing researchers to explore the increasingly large amounts of sequence data generated by the Human Genome Project and other related biological projects. The approaches presented by the authors are state-of-the-art and show how to reduce analysis times significantly, sometimes from days to minutes. High Performance Computational Methods for Biological Sequence Analysis is tremendously important to biomedical science students and researchers who are interested in applying sequence analyses to their studies, and to computational science students and researchers who are interested in applying new computational approaches to biological sequence analyses.
The advent of very large scale integrated circuit technology has enabled the construction of very complex and large interconnection networks. By most accounts, the next generation of supercomputers will achieve its gains by increasing the number of processing elements, rather than by using faster processors. The most difficult technical problem in constructing a supercom puter will be the design of the interconnection network through which the processors communicate. Selecting an appropriate and adequate topological structure of interconnection networks will become a critical issue, on which many research efforts have been made over the past decade. The book is aimed to attract the readers' attention to such an important research area. Graph theory is a fundamental and powerful mathematical tool for de signing and analyzing interconnection networks, since the topological struc ture of an interconnection network is a graph. This fact has been univer sally accepted by computer scientists and engineers. This book provides the most basic problems, concepts and well-established results on the topological structure and analysis of interconnection networks in the language of graph theory. The material originates from a vast amount of literature, but the theory presented is developed carefully and skillfully. The treatment is gen erally self-contained, and most stated results are proved. No exercises are explicitly exhibited, but there are some stated results whose proofs are left to the reader to consolidate his understanding of the material."
This book provides a comprehensive introduction to processing-in-memory (PIM) technology, from its architectures to circuits implementations on multiple memory types and describes how it can be a viable computer architecture in the era of AI and big data. The authors summarize the challenges of AI hardware systems, processing-in-memory (PIM) constraints and approaches to derive system-level requirements for a practical and feasible PIM solution. The presentation focuses on feasible PIM solutions that can be implemented and used in real systems, including architectures, circuits, and implementation cases for each major memory type (SRAM, DRAM, and ReRAM).
Fault-Tolerant Parallel Computation presents recent advances in algorithmic ways of introducing fault-tolerance in multiprocessors under the constraint of preserving efficiency. The difficulty associated with combining fault-tolerance and efficiency is that the two have conflicting means: fault-tolerance is achieved by introducing redundancy, while efficiency is achieved by removing redundancy. This monograph demonstrates how in certain models of parallel computation it is possible to combine efficiency and fault-tolerance and shows how it is possible to develop efficient algorithms without concern for fault-tolerance, and then correctly and efficiently execute these algorithms on parallel machines whose processors are subject to arbitrary dynamic fail-stop errors. The efficient algorithmic approaches to multiprocessor fault-tolerance presented in this monograph make a contribution towards bridging the gap between the abstract models of parallel computation and realizable parallel architectures. Fault-Tolerant Parallel Computation presents the state of the art in algorithmic approaches to fault-tolerance in efficient parallel algorithms. The monograph synthesizes work that was presented in recent symposia and published in refereed journals by the authors and other leading researchers. This is the first text that takes the reader on the grand tour of this new field summarizing major results and identifying hard open problems. This monograph will be of interest to academic and industrial researchers and graduate students working in the areas of fault-tolerance, algorithms and parallel computation and may also be used as a text in a graduate course on parallel algorithmic techniques and fault-tolerance.
Efficient parallel solutions have been found to many problems. Some of them can be obtained automatically from sequential programs, using compilers. However, there is a large class of problems - irregular problems - that lack efficient solutions. IRREGULAR 94 - a workshop and summer school organized in Geneva - addressed the problems associated with the derivation of efficient solutions to irregular problems. This book, which is based on the workshop, draws on the contributions of outstanding scientists to present the state of the art in irregular problems, covering aspects ranging from scientific computing, discrete optimization, and automatic extraction of parallelism. Audience: This first book on parallel algorithms for irregular problems is of interest to advanced graduate students and researchers in parallel computer science.
In Symbolic Analysis for Parallelizing Compilers the author presents an excellent demonstration of the effectiveness of symbolic analysis in tackling important optimization problems, some of which inhibit loop parallelization. The framework that Haghighat presents has proved extremely successful in induction and wraparound variable analysis, strength reduction, dead code elimination and symbolic constant propagation. The approach can be applied to any program transformation or optimization problem that uses properties and value ranges of program names. Symbolic analysis can be used on any transformational system or optimization problem that relies on compile-time information about program variables. This covers the majority of, if not all optimization and parallelization techniques. The book makes a compelling case for the potential of symbolic analysis, applying it for the first time - and with remarkable results - to a number of classical optimization problems: loop scheduling, static timing or size analysis, and dependence analysis. It demonstrates how symbolic analysis can solve these problems faster and more accurately than existing hybrid techniques.
This book provides an introduction to digital storage for consumer electronics. It discusses the various types of digital storage, including emerging non-volatile solid-state storage technologies and their advantages and disadvantages. It discusses the best practices for selecting, integrating, and using storage devices for various applications. It explores the networking of devices into an overall organization that results in always-available home storage combined with digital storage in the cloud to create an infrastructure to support emerging consumer applications and the Internet of Things. It also looks at the role of digital storage devices in creating security and privacy in consumer products.
This second edition focuses on the thought process of digital design and implementation in the context of VLSI and system design. It covers the Verilog 2001 and Verilog 2005 RTL design styles, constructs and the optimization at the RTL and synthesis level. The book also covers the logic synthesis, low power, multiple clock domain design concepts and design performance improvement techniques. The book includes 250 design examples/illustrations and 100 exercise questions. This volume can be used as a core or supplementary text in undergraduate courses on logic design and as a text for professional and vocational coursework. In addition, it will be a hands-on professional reference and a self-study aid for hobbyists.
Based on the Lectures given during the Eurocourse on 'Computing with Parallel Architectures' held at the Joint Research Centre Ispra, Italy, September 10-14, 1990
It has been widely recognized that artificial intelligence computations offer large potential for distributed and parallel processing. Unfortunately, not much is known about designing parallel AI algorithms and efficient, easy-to-use parallel computer architectures for AI applications. The field of parallel computation and computers for AI is in its infancy, but some significant ideas have appeared and initial practical experience has become available. The purpose of this book has been to collect in one volume contributions from several leading researchers and pioneers of AI that represent a sample of these ideas and experiences. This sample does not include all schools of thought nor contributions from all leading researchers, but it covers a relatively wide variety of views and topics and in this sense can be helpful in assessing the state ofthe art. We hope that the book will serve, at least, as a pointer to more specialized literature and that it will stimulate interest in the area of parallel AI processing. It has been a great pleasure and a privilege to cooperate with all contributors to this volume. They have my warmest thanks and gratitude. Mrs. Birgitta Knapp has assisted me in the editorial task and demonstrated a great deal of skill and patience. Janusz S. Kowalik vii INTRODUCTION Artificial intelligence (AI) computer programs can be very time-consuming.
For courses in Logic and Computer design. Understanding Logic and Computer Design for All Audiences Logic and Computer Design Fundamentals is a thoroughly up-to-date text that makes logic design, digital system design, and computer design available to students of all levels. The Fifth Edition brings this widely recognised source to modern standards by ensuring that all information is relevant and contemporary. The material focuses on industry trends and successfully bridges the gap between the much higher levels of abstraction students in the field must work with today than in the past. Broadly covering logic and computer design, Logic and Computer Design Fundamentals is a flexibly organised source material that allows instructors to tailor its use to a wide range of student audiences.
Securing Cloud Services - A pragmatic guide gives an overview of security architecture processes and explains how they may be used to derive an appropriate set of security controls to manage the risks associated with working in the Cloud. Manage the risks associated with Cloud computing - buy this book today!
It has become clear in recent years from such major forums as the various international conferences on flexible manufacruring systems (FMSs) that the computer-controlled and -integrated "factory of the furure" is now being considered as a commercially viable and technically achievable goal. To date, most attention has been given to the design, development, and evalu ation of flexible machining systems. Now, with the essential support of increasing numbers of industrial examples, the general concepts, technical requirements, and cost-effectiveness of responsive, computer-integrated, flexible machining systems are fast becoming established knowledge. There is, of course, much still to be done in the development of modular com puter hardware and software, and the scope for cost-effective developments in pro gramming systems, workpiece handling, and quality control will ensure that contin uing development will occur over the next decade. However, international attention is now increasingly rurning toward the flexible computer control of the assembly process as the next logical step in progressive factory automation. It is here at this very early stage that Tony Owen has bravely set out to encompass the future field of flexible assembly systems (FASs) in his own distinctive, wide-ranging style."
This book comprehensively covers the state-of-the-art security applications of machine learning techniques. The first part explains the emerging solutions for anti-tamper design, IC Counterfeits detection and hardware Trojan identification. It also explains the latest development of deep-learning-based modeling attacks on physically unclonable functions and outlines the design principles of more resilient PUF architectures. The second discusses the use of machine learning to mitigate the risks of security attacks on cyber-physical systems, with a particular focus on power plants. The third part provides an in-depth insight into the principles of malware analysis in embedded systems and describes how the usage of supervised learning techniques provides an effective approach to tackle software vulnerabilities.
There is nO' dDubt that the mioroprooessor (~p) revDlutiDn will cDntinue intO' the future and many will be required to' specify and integrate mi- crDprDceSSDrs intO' prDducts Dr systems in their Dwn disciplines. There- fDre, well-designed flexible interfaoes will be required to' ensure CDm- patibility with Dther equipments and to' extend design DptiDns. AlthDugh there are several bDDks Dn micrDcDmputers and micrDprDcessDrs, Dnly few Df thDse devDte but a small part Dn the impDrtant aspects Df interfaces. It was with this in mind that the present bDDk was written as a selfcDn- tained vDlume to' be part Df the mDre general series : Mioroprooessors- Based Systems Engineering. It fills an existing gap in technDIDgy, as in- terfaces are the last items to' be seriDusly cDnsidered in the race Df new technDIDgy, and it deals with the systematic study Df micrDprDcessDr interfaces and their applicatiDns in many diversified fields. This bDDk is aimed at engineers in industry and engineering stu- dents whO' need to' learn hDW to' interface micrDprDcessDrs, and hence mi- crDcDmputers and Dther related equipments, to' external digital Dr analDg devices. It is suitable fDr use as a textbDDk Dr fDr supplementary read- ing, either in an applied undergraduate CDurse in electrical engineering Dr in the last year Df three-year-curriculum technical cDlleges.
Neural network and artificial intelligence algorithrns and computing have increased not only in complexity but also in the number of applications. This in turn has posed a tremendous need for a larger computational power that conventional scalar processors may not be able to deliver efficiently. These processors are oriented towards numeric and data manipulations. Due to the neurocomputing requirements (such as non-programming and learning) and the artificial intelligence requirements (such as symbolic manipulation and knowledge representation) a different set of constraints and demands are imposed on the computer architectures/organizations for these applications. Research and development of new computer architectures and VLSI circuits for neural networks and artificial intelligence have been increased in order to meet the new performance requirements. This book presents novel approaches and trends on VLSI implementations of machines for these applications. Papers have been drawn from a number of research communities; the subjects span analog and digital VLSI design, computer design, computer architectures, neurocomputing and artificial intelligence techniques. This book has been organized into four subject areas that cover the two major categories of this book; the areas are: analog circuits for neural networks, digital implementations of neural networks, neural networks on multiprocessor systems and applications, and VLSI machines for artificial intelligence. The topics that are covered in each area are briefly introduced below.
The proliferation of multicore processors in the embedded market for Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) makes developing real-time embedded applications increasingly difficult. What is the underlying theory that makes multicore real-time possible? How does theory influence application design? When is a real-time operating system (RTOS) useful? What RTOS features do applications need? How does a mature RTOS help manage the complexity of multicore hardware? Real-Time Systems Development with RTEMS and Multicore Processors answers these questions and more with exemplar Real-Time Executive for Multiprocessor Systems (RTEMS) RTOS to provide concrete advice and examples for constructing useful, feature-rich applications. RTEMS is free, open-source software that supports multi-processor systems for over a dozen CPU architectures and over 150 specific system boards in applications spanning the range of IoT and CPS domains such as satellites, particle accelerators, robots, racing motorcycles, building controls, medical devices, and more. The focus of this book is on enabling real-time embedded software engineering while providing sufficient theoretical foundations and hardware background to understand the rationale for key decisions in RTOS and application design and implementation. The topics covered in this book include: Cross-compilation for embedded systems development Concurrent programming models used in real-time embedded software Real-time scheduling theory and algorithms used in wide practice Usage and comparison of two application programmer interfaces (APIs) in real-time embedded software: POSIX and the RTEMS Classic APIs Design and implementation in RTEMS of commonly found RTOS features for schedulers, task management, time-keeping, inter-task synchronization, inter-task communication, and networking The challenges introduced by multicore hardware, advances in multicore real-time theory, and software engineering multicore real-time systems with RTEMS All the authors of this book are experts in the academic field of real-time embedded systems. Two of the authors are primary open-source maintainers of the RTEMS software project.
This book puts in focus various techniques for checking modeling fidelity of Cyber Physical Systems (CPS), with respect to the physical world they represent. The authors' present modeling and analysis techniques representing different communities, from very different angles, discuss their possible interactions, and discuss the commonalities and differences between their practices. Coverage includes model driven development, resource-driven development, statistical analysis, proofs of simulator implementation, compiler construction, power/temperature modeling of digital devices, high-level performance analysis, and code/device certification. Several industrial contexts are covered, including modeling of computing and communication, proof architectures models and statistical based validation techniques.
An Interdisciplinary Approach to Modern Network Security presents the latest methodologies and trends in detecting and preventing network threats. Investigating the potential of current and emerging security technologies, this publication is an all-inclusive reference source for academicians, researchers, students, professionals, practitioners, network analysts and technology specialists interested in the simulation and application of computer network protection. It presents theoretical frameworks and the latest research findings in network security technologies, while analyzing malicious threats which can compromise network integrity. It discusses the security and optimization of computer networks for use in a variety of disciplines and fields. Touching on such matters as mobile and VPN security, IP spoofing and intrusion detection, this edited collection emboldens the efforts of researchers, academics and network administrators working in both the public and private sectors. This edited compilation includes chapters covering topics such as attacks and countermeasures, mobile wireless networking, intrusion detection systems, next-generation firewalls, web security and much more. Information and communication systems are an essential component of our society, forcing us to become dependent on these infrastructures. At the same time, these systems are undergoing a convergence and interconnection process that has its benefits, but also raises specific threats to user interests. Citizens and organizations must feel safe when using cyberspace facilities in order to benefit from its advantages. This book is interdisciplinary in the sense that it covers a wide range of topics like network security threats, attacks, tools and procedures to mitigate the effects of malware and common network attacks, network security architecture and deep learning methods of intrusion detection. |
You may like...
Mathematical Modelling and Numerical…
Philippe G. Ciarlet
Hardcover
The Handbook of Impression Formation - A…
Emily Balcetis, Gordon B. Moskowitz
Hardcover
R6,373
Discovery Miles 63 730
Visual Masking - Time slices through…
Bruno Breitmeyer, Haluk Ogmen
Hardcover
R3,652
Discovery Miles 36 520
The Seven Principles For Making Marriage…
John Gottman, Nan Silver
Paperback
|