![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer hardware & operating systems > Computer architecture & logic design
This book summarizes the key scientific outcomes of the Horizon 2020 research project TULIPP: Towards Ubiquitous Low-power Image Processing Platforms. The main focus lies on the development of high-performance, energy-efficient embedded systems for the growing range of increasingly complex image processing applications. The holistic TULIPP approach is described in the book, which addresses hardware platforms, programming tools and embedded operating systems. Several of the results are available as open-source hardware/software for the community. The results are evaluated with several use cases taken from real-world applications in key domains such as Unmanned Aerial Vehicles (UAVs), robotics, space and medicine. Discusses the development of high-performance, energy-efficient embedded systems for the growing range of increasingly complex image processing applications; Covers the hardware architecture of embedded image processing systems, novel methods, tools and libraries for programming those systems as well as embedded operating systems to manage those systems; Demonstrates results with several challenging applications, such as medical systems, robotics, drones and automotive.
This book describes innovative techniques to address the testing
needs of 3D stacked integrated circuits (ICs) that utilize
through-silicon-vias (TSVs) as vertical interconnects. The authors
identify the key challenges facing 3D IC testing and present
results that have emerged from cutting-edge research in this
domain. Coverage includes topics ranging from die-level wrappers,
self-test circuits, and TSV probing to test-architecture design,
test scheduling, and optimization. Readers will benefit from an
in-depth look at test-technology solutions that are needed to make
3D ICs a reality and commercially viable.
This book describes in detail the impact of process variations on Network-on-Chip (NoC) performance. The authors evaluate various NoC topologies under high process variation and explain the design of efficient NoCs, with advanced technologies. The discussion includes variation in logic and interconnect, in order to evaluate the delay and throughput variation with different NoC topologies. The authors describe an asynchronous router, as a robust design to mitigate the impact of process variation in NoCs and the performance of different routing algorithms is determined with/without process variation for various traffic patterns. Additionally, a novel Process variation Delay and Congestion aware Routing algorithm (PDCR) is described for asynchronous NoC design, which outperforms different adaptive routing algorithms in the average delay and saturation throughput for various traffic patterns.
This book provides a systematic and unified methodology, including basic principles and reusable processes, for dynamic memory management (DMM) in embedded systems. The authors describe in detail how to design and optimize the use of dynamic memory in modern, multimedia and network applications, targeting the latest generation of portable embedded systems, such as smartphones. Coverage includes a variety of design and optimization topics in electronic design automation of DMM, from high-level software optimization to microarchitecture-level hardware support. The authors describe the design of multi-layer dynamic data structures for the final memory hierarchy layers of the target portable embedded systems and how to create a low-fragmentation, cost-efficient, dynamic memory management subsystem out of configurable components for the particular memory allocation and de-allocation patterns for each type of application. The design methodology described in this book is based on propagating constraints among design decisions from multiple abstraction levels (both hardware and software) and customizing DMM according to application-specific data access and storage behaviors.
This book introduces readers to a variety of tools for analog layout design automation. After discussing the placement and routing problem in electronic design automation (EDA), the authors overview a variety of automatic layout generation tools, as well as the most recent advances in analog layout-aware circuit sizing. The discussion includes different methods for automatic placement (a template-based Placer and an optimization-based Placer), a fully-automatic Router and an empirical-based Parasitic Extractor. The concepts and algorithms of all the modules are thoroughly described, enabling readers to reproduce the methodologies, improve the quality of their designs, or use them as starting point for a new tool. All the methods described are applied to practical examples for a 130nm design process, as well as placement and routing benchmark sets.
The latest work by the world's leading authorities on the use of formal methods in computer science is presented in this volume, based on the 1995 International Summer School in Marktoberdorf, Germany. Logic is of special importance in computer science, since it provides the basis for giving correct semantics of programs, for specification and verification of software, and for program synthesis. The lectures presented here provide the basic knowledge a researcher in this area should have and give excellent starting points for exploring the literature. Topics covered include semantics and category theory, machine based theorem proving, logic programming, bounded arithmetic, proof theory, algebraic specifications and rewriting, algebraic algorithms, and type theory.
Grids, P2P and Services Computing, the 12th volume of the CoreGRID series, is based on the CoreGrid ERCIM Working Group Workshop on Grids, P2P and Service Computing in Conjunction with EuroPar 2009. The workshop will take place August 24th, 2009 in Delft, The Netherlands. Grids, P2P and Services Computing, an edited volume contributed by well-established researchers worldwide, will focus on solving research challenges for Grid and P2P technologies. Topics of interest include: Service Level Agreement, Data & Knowledge Management, Scheduling, Trust and Security, Network Monitoring and more. Grids are a crucial enabling technology for scientific and industrial development. This book also includes new challenges related to service-oriented infrastructures. Grids, P2P and Services Computing is designed for a professional audience composed of researchers and practitioners within the Grid community industry. This volume is also suitable for advanced-level students in computer science.
Advances in Computers remains at the forefront in presenting the
new developments in the ever-changing field of information
technology. Since 1960, Advances in Computers has chronicled the
constantly shifting theories and methods of this technology that
greatly shape our lives today.
This book provides a comprehensive overview of flow-based, microfluidic VLSI. The authors describe and solve in a comprehensive and holistic manner practical challenges such as control synthesis, wash optimization, design for testability, and diagnosis of modern flow-based microfluidic biochips. They introduce practical solutions, based on rigorous optimization and formal models. The technical contributions presented in this book will not only shorten the product development cycle, but also accelerate the adoption and further development of modern flow-based microfluidic biochips, by facilitating the full exploitation of design complexities that are possible with current fabrication techniques.
This book is about security in embedded systems and it provides an authoritative reference to all aspects of security in system-on-chip (SoC) designs. The authors discuss issues ranging from security requirements in SoC designs, definition of architectures and design choices to enforce and validate security policies, and trade-offs and conflicts involving security, functionality, and debug requirements. Coverage also includes case studies from the "trenches" of current industrial practice in design, implementation, and validation of security-critical embedded systems. Provides an authoritative reference and summary of the current state-of-the-art in security for embedded systems, hardware IPs and SoC designs; Takes a "cross-cutting" view of security that interacts with different design and validation components such as architecture, implementation, verification, and debug, each enforcing unique trade-offs; Includes high-level overview, detailed analysis on implementation, and relevant case studies on design/verification/debug issues related to IP/SoC security.
This book provides embedded software developers with techniques for programming heterogeneous Multi-Processor Systems-on-Chip (MPSoCs), capable of executing multiple applications simultaneously. It describes a set of algorithms and methodologies to narrow the software productivity gap, as well as an in-depth description of the underlying problems and challenges of today's programming practices. The authors present four different tool flows: A parallelism extraction flow for applications written using the C programming language, a mapping and scheduling flow for parallel applications, a special mapping flow for baseband applications in the context of Software Defined Radio (SDR) and a final flow for analyzing multiple applications at design time. The tool flows are evaluated on Virtual Platforms (VPs), which mimic different characteristics of state-of-the-art heterogeneous MPSoCs.
This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book's chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. * Examines how to optimize the architecture of hardware design for error correcting codes; * Presents error correction codes from theory to optimized architecture for the current and the next generation standards; * Provides coverage of industrial user needs advanced error correcting techniques. Advanced Hardware Design for Error Correcting Codes includes a foreword by Claude Berrou.
This book introduces new massively parallel computer (MPSoC) architectures called invasive tightly coupled processor arrays. It proposes strategies, architecture designs, and programming interfaces for invasive TCPAs that allow invading and subsequently executing loop programs with strict requirements or guarantees of non-functional execution qualities such as performance, power consumption, and reliability. For the first time, such a configurable processor array architecture consisting of locally interconnected VLIW processing elements can be claimed by programs, either in full or in part, using the principle of invasive computing. Invasive TCPAs provide unprecedented energy efficiency for the parallel execution of nested loop programs by avoiding any global memory access such as GPUs and may even support loops with complex dependencies such as loop-carried dependencies that are not amenable to parallel execution on GPUs. For this purpose, the book proposes different invasion strategies for claiming a desired number of processing elements (PEs) or region within a TCPA exclusively for an application according to performance requirements. It not only presents models for implementing invasion strategies in hardware, but also proposes two distinct design flavors for dedicated hardware components to support invasion control on TCPAs.
This book covers key concepts in the design of 2D and 3D Network-on-Chip interconnect. It highlights design challenges and discusses fundamentals of NoC technology, including architectures, algorithms and tools. Coverage focuses on topology exploration for both 2D and 3D NoCs, routing algorithms, NoC router design, NoC-based system integration, verification and testing, and NoC reliability. Case studies are used to illuminate new design methodologies.
This book provides a comprehensive guide to the design of sustainable and green computing systems (GSC). Coverage includes important breakthroughs in various aspects of GSC, including multi-core architectures, interconnection technology, data centers, high performance computing (HPC), and sensor networks. The authors address the challenges of power efficiency and sustainability in various contexts, including system design, computer architecture, programming languages, compilers and networking.
These are the proceedings of the 20th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linearor nonlinear systems of algebraic equations that arise when various problems in continuum mechanics are discretized using finite elements. They are designed for massively parallel computers and take the memory hierarchy of such systems in mind. This is essential for approaching peak floating point performance. There is an increasingly well developed theory whichis having a direct impact on the development and improvements of these algorithms.
This book provides a hands-on, application-oriented guide to the language and methodology of both SystemVerilog Assertions and Functional Coverage. Readers will benefit from the step-by-step approach to learning language and methodology nuances of both SystemVerilog Assertions and Functional Coverage, which will enable them to uncover hidden and hard to find bugs, point directly to the source of the bug, provide for a clean and easy way to model complex timing checks and objectively answer the question 'have we functionally verified everything'. Written by a professional end-user of ASIC/SoC/CPU and FPGA design and Verification, this book explains each concept with easy to understand examples, simulation logs and applications derived from real projects. Readers will be empowered to tackle the modeling of complex checkers for functional verification and exhaustive coverage models for functional coverage, thereby drastically reducing their time to design, debug and cover. This updated third edition addresses the latest functional set released in IEEE-1800 (2012) LRM, including numerous additional operators and features. Additionally, many of the Concurrent Assertions/Operators explanations are enhanced, with the addition of more examples and figures. * Covers in its entirety the latest IEEE-1800 2012 LRM syntax and semantics; * Covers both SystemVerilog Assertions and SystemVerilog Functional Coverage languages and methodologies; * Provides practical applications of the what, how and why of Assertion Based Verification and Functional Coverage methodologies; * Explains each concept in a step-by-step fashion and applies it to a practical real life example; * Includes 6 practical LABs that enable readers to put in practice the concepts explained in the book.
Given the widespread use of real-time multitasking systems, there are tremendous optimization opportunities if reconfigurable computing can be effectively incorporated while maintaining performance and other design constraints of typical applications. The focus of this book is to describe the dynamic reconfiguration techniques that can be safely used in real-time systems. This book provides comprehensive approaches by considering synergistic effects of computation, communication as well as storage together to significantly improve overall performance, power, energy and temperature."
This innovative and in-depth book integrates the well-developed
theory and practical applications of one dimensional and
multidimensional multirate signal processing. Using a rigorous
mathematical framework, it carefully examines the fundamentals of
this rapidly growing field. Areas covered include: basic building
blocks of multirate signal processing; fundamentals of
multidimensional multirate signal processing; multirate filter
banks; lossless lattice structures; introduction to wavelet signal
processing.
This book addresses the topic of exploiting enterprise-linked data with a particular focus on knowledge construction and accessibility within enterprises. It identifies the gaps between the requirements of enterprise knowledge consumption and "standard" data consuming technologies by analysing real-world use cases, and proposes the enterprise knowledge graph to fill such gaps. It provides concrete guidelines for effectively deploying linked-data graphs within and across business organizations. It is divided into three parts, focusing on the key technologies for constructing, understanding and employing knowledge graphs. Part 1 introduces basic background information and technologies, and presents a simple architecture to elucidate the main phases and tasks required during the lifecycle of knowledge graphs. Part 2 focuses on technical aspects; it starts with state-of-the art knowledge-graph construction approaches, and then discusses exploration and exploitation techniques as well as advanced question-answering topics concerning knowledge graphs. Lastly, Part 3 demonstrates examples of successful knowledge graph applications in the media industry, healthcare and cultural heritage, and offers conclusions and future visions.
This book provides a comprehensive overview of key technologies being used to address challenges raised by continued device scaling and the extending gap between memory and central processing unit performance. Authors discuss in detail what are known commonly as "More than Moore" (MtM), technologies, which add value to devices by incorporating functionalities that do not necessarily scale according to "Moore's Law". Coverage focuses on three key technologies needed for efficient power management and cost per performance: novel memories, 3D integration and photonic on-chip interconnect.
Volume 54 presents six chapters on the changing face of software engineering-the process by which we build reliable software systems. We are constantly building faster and less expensive processors, which allow us to use different processes to try and conquer the "bug" problem facing all developments-how to build reliable systems with few errors at low or at least manageable cost. The first three chapters of this volume emphasize components and the impact that object-oriented design is having on the program development process (a current "hot topic"). The final three chapters present additional aspects of the software development process, including maintenance, purchasing strategies, and secure outsourcing of scientific computations.
This book serves as a practical guide for practicing engineers who need to design embedded systems for high-speed data acquisition and control systems. A minimum amount of theory is presented, along with a review of analog and digital electronics, followed by detailed explanations of essential topics in hardware design and software development. The discussion of hardware focuses on microcontroller design (ARM microcontrollers and FPGAs), techniques of embedded design, high speed data acquisition (DAQ) and control systems. Coverage of software development includes main programming techniques, culminating in the study of real-time operating systems. All concepts are introduced in a manner to be highly-accessible to practicing engineers and lead to the practical implementation of an embedded board that can be used in various industrial fields as a control system and high speed data acquisition system. |
![]() ![]() You may like...
The Boundary Integral Approach to Static…
Heinz Antes, P.D. Panagiotopoulos
Hardcover
R2,495
Discovery Miles 24 950
Complex Networks IX - Proceedings of the…
Sean Cornelius, Kate Coronges, …
Hardcover
R2,925
Discovery Miles 29 250
Towards a Theoretical Framework for…
Alexander Mehler, Andy Lucking, …
Hardcover
Localization for $THH(ku)$ and the…
Andrew J. Blumberg, Michael A. Mandell
Paperback
R2,212
Discovery Miles 22 120
|