![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer hardware & operating systems > Computer architecture & logic design
This state-of-the-art survey gives a systematic presentation of recent advances in the design and validation of computer architectures. Based on advanced research ideas and approaches, and written by eminent researchers in the field, seven chapters cover the whole range from computer aided high-level design of VLSI circuits and systems to layout and testable design, including modeling and synthesis of behavior, of control, and of dataflow, cell based logic optimization, machine assisted verification, and virtual machine design. The chapters presuppose only basic familiarity with computer architecture. They are self-contained and lead the reader gently and informatively to the forefront of current research. A special feature of the book is the comprehensive range of architecture design and validation topics covered, giving the reader a clear view of the problems and of advanced techniques for their solution.
This book presents the theory behind software-implemented hardware fault tolerance, as well as the practical aspects needed to put it to work on real examples. By evaluating accurately the advantages and disadvantages of the already available approaches, the book provides a guide to developers willing to adopt software-implemented hardware fault tolerance in their applications. Moreover, the book identifies open issues for researchers willing to improve the already available techniques.
High Performance Computing Systems and Applications contains the fully refereed papers from the 13th Annual Symposium on High Performance Computing, held in Kingston, Canada, in June 1999. This book presents the latest research in HPC architectures, distributed and shared memory performance, algorithms and solvers, with special sessions on atmospheric science, computational chemistry and physics. High Performance Computing Systems and Applications is suitable as a secondary text for graduate level courses, and as a reference for researchers and practitioners in industry.
This book is a comprehensive guide to assertion-based verification of hardware designs using System Verilog Assertions (SVA). It enables readers to minimize the cost of verification by using assertion-based techniques in simulation testing, coverage collection and formal analysis. The book provides detailed descriptions of all the language features of SVA, accompanied by step-by-step examples of how to employ them to construct powerful and reusable sets of properties. The book also shows how SVA fits into the broader System Verilog language, demonstrating the ways that assertions can interact with other System Verilog components. The reader new to hardware verification will benefit from general material describing the nature of design models and behaviors, how they are exercised, and the different roles that assertions play. This second edition covers the features introduced by the recent IEEE 1800-2012. System Verilog standard, explaining in detail the new and enhanced assertion constructs. The book makes SVA usable and accessible for hardware designers, verification engineers, formal verification specialists and EDA tool developers. With numerous exercises, ranging in depth and difficulty, the book is also suitable as a text for students.
Logic circuits are becoming increasingly susceptible to probabilistic behavior caused by external radiation and process variation. In addition, inherently probabilistic quantum- and nano-technologies are on the horizon as we approach the limits of CMOS scaling. Ensuring the reliability of such circuits despite the probabilistic behavior is a key challenge in IC design---one that necessitates a fundamental, probabilistic reformulation of synthesis and testing techniques. This monograph will present techniques for analyzing, designing, and testing logic circuits with probabilistic behavior.
This book describes the life cycle process of IP cores, from specification to production, including IP modeling, verification, optimization, and protection. Various trade-offs in the design process are discussed, including those associated with many of the most common memory cores, controller IPs and system-on-chip (SoC) buses. Readers will also benefit from the author's practical coverage of new verification methodologies. such as bug localization, UVM, and scan-chain. A SoC case study is presented to compare traditional verification with the new verification methodologies. Discusses the entire life cycle process of IP cores, from specification to production, including IP modeling, verification, optimization, and protection; Introduce a deep introduction for Verilog for both implementation and verification point of view. Demonstrates how to use IP in applications such as memory controllers and SoC buses. Describes a new verification methodology called bug localization; Presents a novel scan-chain methodology for RTL debugging; Enables readers to employ UVM methodology in straightforward, practical terms.
Effective compilers allow for a more efficient execution of application programs for a given computer architecture, while well-conceived architectural features can support more effective compiler optimization techniques. A well thought-out strategy of trade-offs between compilers and computer architectures is the key to the successful designing of highly efficient and effective computer systems. From embedded micro-controllers to large-scale multiprocessor systems, it is important to understand the interaction between compilers and computer architectures. The goal of the Annual Workshop on Interaction between Compilers and Computer Architectures (INTERACT) is to promote new ideas and to present recent developments in compiler techniques and computer architectures that enhance each other's capabilities and performance. Interaction Between Compilers and Computer Architectures is an updated and revised volume consisting of seven papers originally presented at the Fifth Workshop on Interaction between Compilers and Computer Architectures (INTERACT-5), which was held in conjunction with the IEEE HPCA-7 in Monterrey, Mexico in 2001. This volume explores recent developments and ideas for better integration of the interaction between compilers and computer architectures in designing modern processors and computer systems. Interaction Between Compilers and Computer Architectures is suitable as a secondary text for a graduate level course, and as a reference for researchers and practitioners in industry.
This book describes algorithmic methods and parallelization techniques to design a parallel sparse direct solver which is specifically targeted at integrated circuit simulation problems. The authors describe a complete flow and detailed parallel algorithms of the sparse direct solver. They also show how to improve the performance by simple but effective numerical techniques. The sparse direct solver techniques described can be applied to any SPICE-like integrated circuit simulator and have been proven to be high-performance in actual circuit simulation. Readers will benefit from the state-of-the-art parallel integrated circuit simulation techniques described in this book, especially the latest parallel sparse matrix solution techniques.
Logic and Complexity looks at basic logic as it is used in Computer Science, and provides students with a logical approach to Complexity theory. With plenty of exercises, this book presents classical notions of mathematical logic, such as decidability, completeness and incompleteness, as well as new ideas brought by complexity theory such as NP-completeness, randomness and approximations, providing a better understanding for efficient algorithmic solutions to problems. Divided into three parts, it covers: - Model Theory and Recursive Functions - introducing the basic model theory of propositional, 1st order, inductive definitions and 2nd order logic. Recursive functions, Turing computability and decidability are also examined. - Descriptive Complexity - looking at the relationship between definitions of problems, queries, properties of programs and their computational complexity. - Approximation - explaining how some optimization problems and counting problems can be approximated according to their logical form. Logic is important in Computer Science, particularly for verification problems and database query languages such as SQL. Students and researchers in this field will find this book of great interest.
This book describes recent findings in the domain of Boolean logic and Boolean algebra, covering application domains in circuit and system design, but also basic research in mathematics and theoretical computer science. Content includes invited chapters and a selection of the best papers presented at the 13th annual International Workshop on Boolean Problems. Provides a single-source reference to the state-of-the-art research in the field of logic synthesis and Boolean techniques; Includes a selection of the best papers presented at the 13th annual International Workshop on Boolean Problems; Covers Boolean algebras, Boolean logic, Boolean modeling, Combinatorial Search, Boolean and bitwise arithmetic, Software and tools for the solution of Boolean problems, Applications of Boolean logic and algebras, Applications to real-world problems, Boolean constraint solving, and Extensions of Boolean logic.
The goal of this book is to present and compare various options one
for systems architecture from two separate points of view. One,
that of the information technology decision-maker who must choose a
solution matching company business requirements, and secondly that
of the systems architect who finds himself between the rock of
changes in hardware and software technologies and the hard place of
changing business needs.
Integrated Research in Grid Computing presents a selection of the best papers presented at the CoreGRID Integration Workshop (CGIW2005), which took place on November 28-30, 2005 in Pisa, Italy. The aim of CoreGRID is to strengthen and advance scientific and technological excellence in the area of Grid and Peer-to-Peer technologies in order to overcome the current fragmentation and duplication of effort in this area. To achieve this objective, the workshop brought together a critical mass of well-established researchers (including 145 permanent researchers and 171 PhD students) from a number of institutions which have all constructed an ambitious joint program of activities. Priority in the workshop was given to work conducted in Tcollaboration between partners from different research institutions and to promising research proposals that could foster such collaboration in the future.
Adiabatic logic is a potential successor for static CMOS circuit design when it comes to ultra-low-power energy consumption. Future development like the evolutionary shrinking of the minimum feature size as well as revolutionary novel transistor concepts will change the gate level savings gained by adiabatic logic. In addition, the impact of worsening degradation effects has to be considered in the design of adiabatic circuits. The impact of the technology trends on the figures of merit of adiabatic logic, energy saving potential and optimum operating frequency, are investigated, as well as degradation related issues. Adiabatic logic benefits from future devices, is not susceptible to Hot Carrier Injection, and shows less impact of Bias Temperature Instability than static CMOS circuits. Major interest also lies on the efficient generation of the applied power-clock signal. This oscillating power supply can be used to save energy in short idle times by disconnecting circuits. An efficient way to generate the power-clock is by means of the synchronous 2N2P LC oscillator, which is also robust with respect to pattern-induced capacitive variations. An easy to implement but powerful power-clock gating supplement is proposed by gating the synchronization signals. Diverse implementations to shut down the system are presented and rated for their applicability and other aspects like energy reduction capability and data retention. Advantageous usage of adiabatic logic requires compact and efficient arithmetic structures. A broad variety of adder structures and a Coordinate Rotation Digital Computer are compared and rated according to energy consumption and area usage, and the resulting energy saving potential against static CMOS proves the ultra-low-power capability of adiabatic logic. In the end, a new circuit topology has to compete with static CMOS also in productivity. On a 130nm test chip, a large scale test vehicle containing an FIR filter was implemented in adiabatic logic, utilizing a standard, library-based design flow, fabricated, measured and compared to simulations of a static CMOS counterpart, with measured saving factors compliant to the values gained by simulation. This leads to the conclusion that adiabatic logic is ready for productive design due to compatibility not only to CMOS technology, but also to electronic design automation (EDA) tools developed for static CMOS system design.
In Part I, the impact of an integro-differential operator on parity logic engines (PLEs) as a tool for scientific modeling from scratch is presented. Part II outlines the fuzzy structural modeling approach for building new linear and nonlinear dynamical causal forecasting systems in terms of fuzzy cognitive maps (FCMs). Part III introduces the new type of autogenetic algorithms (AGAs) to the field of evolutionary computing. Altogether, these PLEs, FCMs, and AGAs may serve as conceptual and computational power tools.
This state-of-the-art monograph presents a coherent survey of a variety of methods and systems for formal hardware verification. It emphasizes the presentation of approaches that have matured into tools and systems usable for the actual verification of nontrivial circuits. All in all, the book is a representative and well-structured survey on the success and future potential of formal methods in proving the correctness of circuits. The various chapters describe the respective approaches supplying theoretical foundations as well as taking into account the application viewpoint. By applying all methods and systems presented to the same set of IFIP WG10.5 hardware verification examples, a valuable and fair analysis of the strenghts and weaknesses of the various approaches is given.
It gives me immense pleasure to introduce this timely handbook to the research/- velopment communities in the ?eld of signal processing systems (SPS). This is the ?rst of its kind and represents state-of-the-arts coverage of research in this ?eld. The driving force behind information technologies (IT) hinges critically upon the major advances in both component integration and system integration. The major breakthrough for the former is undoubtedly the invention of IC in the 50's by Jack S. Kilby, the Nobel Prize Laureate in Physics 2000. In an integrated circuit, all components were made of the same semiconductor material. Beginning with the pocket calculator in 1964, there have been many increasingly complex applications followed. In fact, processing gates and memory storage on a chip have since then grown at an exponential rate, following Moore's Law. (Moore himself admitted that Moore's Law had turned out to be more accurate, longer lasting and deeper in impact than he ever imagined. ) With greater device integration, various signal processing systems have been realized for many killer IT applications. Further breakthroughs in computer sciences and Internet technologies have also catalyzed large-scale system integration. All these have led to today's IT revolution which has profound impacts on our lifestyle and overall prospect of humanity. (It is hard to imagine life today without mobiles or Internets ) The success of SPS requires a well-concerted integrated approach from mul- ple disciplines, such as device, design, and application.
The exploitationof parallel processing to improve computing speeds is being examined at virtually all levels of computer science, from the study of parallel algorithms to the development of microarchitectures which employ multiple functional units. The most visible aspect of this interest in parallel processing is the commercially available multiprocessor systems which have appeared in the past decade. Unfortunately, the lack of adequate software support for the development of scientific applications that will run efficiently on multiple processors has stunted the acceptance of such systems. One of the major impediments to achieving high parallel efficiency on many data-parallel scientific applications is communication overhead, which is exemplified by cache coherency traffic and global memory overhead of interprocessors with a logically shared address space and physically distributed memory. Such techniques can be used by scientific application designers seeking to optimize code for a particular high-performance computer. In addition, these techniques can be seen as a necesary step toward developing software to support efficient paralled programs. In multiprocessor sytems with physically distributed memory, reducing communication overhead involves both data partitioning and data placement. Adaptive Data Partitioning (ADP) reduces the execution time of parallel programs by minimizing interprocessor communication for iterative data-parallel loops with near-neighbor communication. Data placement schemes are presented that reduce communication overhead. Under the loop partition specified by ADP, global data is partitioned into classes for each processor, allowing each processor to cachecertain regions of the global data set. In addition, for many scientific applications, peak parallel efficiency is achieved only when machine-specific tradeoffs between load imbalance and communication are evaluated and utilized in choosing the data partition. The techniques in this book evaluate these tradeoffs to generate optimum cyclic partitions for data-parallel loops with either a linearly varying or uniform computational structure and either neighborhood or dimensional multicast communication patterns. This tradeoff is also treated within the CPR (Collective Partitioning and Remapping) algorithm, which partitions a collection of loops with various computational structures and communication patterns. Experiments that demonstrate the advantage of ADP, data placement, cyclic partitioning and CPR were conducted on the Encore Multimax and BBN TC2000 multiprocessors using the ADAPT system, a program partitioner which automatically restructures iterative data-parallel loops. This book serves as an excellent reference and may be used as the text for an advanced course on the subject.
Multiple processor systems are an important class of parallel systems. Over the years, several architectures have been proposed to build such systems to satisfy the requirements of high performance computing. These architectures span a wide variety of system types. At the low end of the spectrum, we can build a small, shared-memory parallel system with tens of processors. These systems typically use a bus to interconnect the processors and memory. Such systems, for example, are becoming commonplace in high-performance graph ics workstations. These systems are called uniform memory access (UMA) multiprocessors because they provide uniform access of memory to all pro cessors. These systems provide a single address space, which is preferred by programmers. This architecture, however, cannot be extended even to medium systems with hundreds of processors due to bus bandwidth limitations. To scale systems to medium range i. e., to hundreds of processors, non-bus interconnection networks have been proposed. These systems, for example, use a multistage dynamic interconnection network. Such systems also provide global, shared memory like the UMA systems. However, they introduce local and remote memories, which lead to non-uniform memory access (NUMA) architecture. Distributed-memory architecture is used for systems with thousands of pro cessors. These systems differ from the shared-memory architectures in that there is no globally accessible shared memory. Instead, they use message pass ing to facilitate communication among the processors. As a result, they do not provide single address space."
THE CONTEXT OF PARALLEL PROCESSING The field of digital computer architecture has grown explosively in the past two decades. Through a steady stream of experimental research, tool-building efforts, and theoretical studies, the design of an instruction-set architecture, once considered an art, has been transformed into one of the most quantitative branches of computer technology. At the same time, better understanding of various forms of concurrency, from standard pipelining to massive parallelism, and invention of architectural structures to support a reasonably efficient and user-friendly programming model for such systems, has allowed hardware performance to continue its exponential growth. This trend is expected to continue in the near future. This explosive growth, linked with the expectation that performance will continue its exponential rise with each new generation of hardware and that (in stark contrast to software) computer hardware will function correctly as soon as it comes off the assembly line, has its down side. It has led to unprecedented hardware complexity and almost intolerable dev- opment costs. The challenge facing current and future computer designers is to institute simplicity where we now have complexity; to use fundamental theories being developed in this area to gain performance and ease-of-use benefits from simpler circuits; to understand the interplay between technological capabilities and limitations, on the one hand, and design decisions based on user and application requirements on the other.
The primary audience for this book are advanced undergraduate students and graduate students. Computer architecture, as it happened in other fields such as electronics, evolved from the small to the large, that is, it left the realm of low-level hardware constructs, and gained new dimensions, as distributed systems became the keyword for system implementation. As such, the system architect, today, assembles pieces of hardware that are at least as large as a computer or a network router or a LAN hub, and assigns pieces of software that are self-contained, such as client or server programs, Java applets or pro tocol modules, to those hardware components. The freedom she/he now has, is tremendously challenging. The problems alas, have increased too. What was before mastered and tested carefully before a fully-fledged mainframe or a closely-coupled computer cluster came out on the market, is today left to the responsibility of computer engineers and scientists invested in the role of system architects, who fulfil this role on behalf of software vendors and in tegrators, add-value system developers, R&D institutes, and final users. As system complexity, size and diversity grow, so increases the probability of in consistency, unreliability, non responsiveness and insecurity, not to mention the management overhead. What System Architects Need to Know The insight such an architect must have includes but goes well beyond, the functional properties of distributed systems."
Developing correct and efficient software is far more complex for parallel and distributed systems than it is for sequential processors. Some of the reasons for this added complexity are: the lack of a universally acceptable parallel and distributed programming paradigm, the criticality of achieving high performance, and the difficulty of writing correct parallel and distributed programs. These factors collectively influence the current status of parallel and distributed software development tools efforts. Tools and Environments for Parallel and Distributed Systems addresses the above issues by describing working tools and environments, and gives a solid overview of some of the fundamental research being done worldwide. Topics covered in this collection are: mainstream program development tools, performance prediction tools and studies; debugging tools and research; and nontraditional tools. Audience: Suitable as a secondary text for graduate level courses in software engineering and parallel and distributed systems, and as a reference for researchers and practitioners in industry.
This book describes a circuit architecture for converting real analog signals into a digital format, suitable for digital signal processors. This architecture, referred to as multi-stage noise-shaping (MASH) Continuous-Time Sigma-Delta Modulators (CT- M), has the potential to provide better digital data quality and achieve better data rate conversion with lower power consumption. The authors not only cover MASH continuous-time sigma delta modulator fundamentals, but also provide a literature review that will allow students, professors, and professionals to catch up on the latest developments in related technology.
Recently, a variety ofresults on the complexitystatusofthegraph isomorphism problem has been obtained. These results belong to the so-called structural part of Complexity Theory. Our idea behind this book is to summarize such results which might otherwise not be easily accessible in the literature, and also, to give the reader an understanding of the aims and topics in Structural Complexity Theory, in general. The text is basically self contained; the only prerequisite for reading it is some elementary knowledge from Complexity Theory and Probability Theory. It can be used to teach a seminar or a monographic graduate course, but also parts of it (especially Chapter 1) provide a source of examples for a standard graduate course on Complexity Theory. Many people have helped us in different ways III the process of writing this book. Especially, we would like to thank V. Arvind, R.V. Book, E. May ordomo, and the referee who gave very constructive comments. This book project was especially made possible by a DAAD grant in the "Acciones In tegrada" program. The third author has been supported by the ESPRIT project ALCOM-II."
Parallel processing is seen today as the means to improve the power of computing facilities by breaking the Von Neumann bottleneck of conventional sequential computer architectures. By defining appropriate parallel computation models definite advantages can be obtained. Parallel processing is the center of the research in Europe in the field of Information Processing Systems so the CEC has funded the ESPRIT Supemode project to develop a low cost, high performance, multiprocessor machine. The result of this project is a modular, reconfigurable architecture based on !NMOS transputers: T.Node. This machine can be considered as a research, industrial and commercial success. The CEC has decided to continue to encourage manufacturers as well as research and end-users of transputers by funding other projects in this field. This book presents course papers of the Eurocourse given at the Joint Research Centre in ISPRA (Italy) from the 4th to 8 of November 1991. First we present an overview of various trends in the design of parallel architectures and specially of the T.Node with it's software development environments, new distributed system aspects and also new hardware extensions based on the !NMOS T9000 processor. In a second part, we review some real case applications in the field of image synthesis, image processing, signal processing, terrain modeling, particle physics simulation and also enhanced parallel and distributed numerical methods on T.Node.
Multithreaded computer architecture has emerged as one of the most promising and exciting avenues for the exploitation of parallelism. This new field represents the confluence of several independent research directions which have united over a common set of issues and techniques. Multithreading draws on recent advances in dataflow, RISC, compiling for fine-grained parallel execution, and dynamic resource management. It offers the hope of dramatic performance increases through parallel execution for a broad spectrum of significant applications based on extensions to traditional' approaches. Multithreaded Computer Architecture is divided into four parts, reflecting four major perspectives on the topic. Part I provides the reader with basic background information, definitions, and surveys of work which have in one way or another been pivotal in defining and shaping multithreading as an architectural discipline. Part II examines key elements of multithreading, highlighting the fundamental nature of latency and synchronization. This section presents clever techniques for hiding latency and supporting large synchronization name spaces. Part III looks at three major multithreaded systems, considering issues of machine organization and compilation strategy. Part IV concludes the volume with an analysis of multithreaded architectures, showcasing methodologies and actual measurements. Multithreaded Computer Architecture: A Summary of the State of the Art is an excellent reference source and may be used as a text for advanced courses on the subject. |
You may like...
Edsger Wybe Dijkstra - His Life, Work…
Krzysztof R. Apt, Tony Hoare
Hardcover
R2,920
Discovery Miles 29 200
The System Designer's Guide to VHDL-AMS…
Peter J Ashenden, Gregory D. Peterson, …
Paperback
R2,281
Discovery Miles 22 810
Advances in Delay-Tolerant Networks…
Joel J. P. C. Rodrigues
Paperback
R4,669
Discovery Miles 46 690
Novel Approaches to Information Systems…
Naveen Prakash, Deepika Prakash
Hardcover
R5,924
Discovery Miles 59 240
Cyber-Physical Systems for Social…
Maya Dimitrova, Hiroaki Wagatsuma
Hardcover
R6,528
Discovery Miles 65 280
|