![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering
The hidden costs of artificial intelligence—from natural resources and labor to privacy, equality, and freedom. What happens when artificial intelligence saturates political life and depletes the planet? How is AI shaping our understanding of ourselves and our societies? Drawing on more than a decade of research, award‑winning scholar Kate Crawford reveals how AI is a technology of extraction: from the minerals drawn from the earth to the labor pulled from low-wage information workers to the data taken from every action and expression. Crawford reveals how this planetary network is fueling a shift toward undemocratic governance and increased inequity. Rather than taking a narrow focus on code and algorithms, Crawford offers us a material and political perspective on what it takes to make AI and how it centralizes power. This is an urgent account of what is at stake as technology companies use artificial intelligence to reshape the world.
The Designer's Guide to the Cortex-M Microcontrollers, Third Edition provides an easy-to-understand introduction to the concepts required to develop programs in C with a Cortex-M based microcontroller. Sections cover architectural descriptions that are supported with practical examples, enabling readers to easily develop basic C programs to run on the Cortex-M0/M0+/M3 and M4 and M7 and examine advanced features of the Cortex architecture, such as memory protection, operating modes and dual stack operation. Final sections examine techniques for software testing and code reuse specific to Cortex-M microcontrollers. Users will learn the key differences between the Cortex-M0/M0+/M3 and M4 and M7; how to write C programs to run on Cortex-M based processors; how to make the best use of the CoreSight debug system; the Cortex-M operating modes and memory protection; advanced software techniques that can be used on Cortex-M microcontrollers, and much more.
The relentless advances in all areas of information and communication technology, intelligent systems, and related domains have continued to drive innovative research. Most of these works have attempted to contribute in some form towards improving human life in general and have become indispensable elements of our day-to-day lives. The evolution continues at an accelerated pace while the world faces innumerable challenges and rapid advances in artificial intelligence, wireless communication, sensors, cloud and edge computing, and biomedical sciences. These advances must be documented and studied further in order to ensure society's continual development. The Handbook of Research on Evolving Designs and Innovation in ICT and Intelligent Systems for Real-World Applications disseminates details of works undertaken by various groups of researchers in emerging areas related to information and communication technology, electronics engineering, intelligent systems, and allied disciplines with real-world applications. Covering a wide range of topics such as augmented reality and wireless sensor networks, this major reference work is ideal for industry professionals, researchers, scholars, practitioners, academicians, engineers, instructors, and students.
Providing a coherent and multidisciplinary approach to digitalization, this Modern Guide aims to systematize how the digitalization process affects infrastructure-based industries, including telecommunications, transport, energy, water and postal services. This important book reviews the literature on how digital technologies can impact infrastructure design, construction and maintenance costs, with specific references for each industry. Contributors analyse how digitalization is disrupting traditional infrastructure managers in terms of capacity management and traffic flows as well as discussing key topics including data governance, data sharing, digital platforms and sector convergence. With special attention devoted to regulatory and governance challenges, this will be welcomed by researchers of network industries and digitalization. This will also be of special interest to academics and scholars interested in the digitalization process, data governance and infrastructure management.
Metal Oxide Defects: Fundamentals, Design, Development and Applications provides a broad perspective on the development of advanced experimental techniques to study defects and their chemical activity and catalytic reactivity in various metal oxides. This book highlights advances in characterization and analytical techniques to achieve better understanding of a wide range of defects, most importantly, state-of-the-art methodologies for controlling defects. The book provides readers with pathways to apply basic principles and interpret the behavior of metal oxides. After reviewing characterization and analytical techniques, the book focuses on the relationship of defects to the properties and performance of metal oxides. Finally, there is a review of the methods to control defects and the applications of defect engineering for the design of metal oxides for applications in optoelectronics, energy, sensing, and more. This book is a key reference for materials scientists and engineers, chemists, and physicists.
Functional Materials from Carbon, Inorganic and Organic Sources: Methods and Advances describes the basic principles, mechanisms and theoretical background of functional materials. Sections cover Carbon-based functional materials, Inorganic functional materials for renewable and sustainable energy applications, and Organic and biological based functional materials. Applications such as energy storage and conversion, electronic and photonics devices, and in medicine are also explored. Sections dive into photovoltaic devices, light emitting devices, energy storage materials and quantum dot devices, solar cell fundamentals and devices, perovskite materials and ceramic thin films. Final sections emphasize green approaches to synthesis in semiconductor nanoparticles, quinolone complexes, biomaterials and biopolymers.
Modern Luminescence: From Fundamental Concepts to Materials and Applications, Volume One, Concepts and Luminescence is a multivolume work that reviews the fundamental principles, properties and applications of luminescent materials. Topics addressed include key concepts of luminescence, with a focus on important characterization techniques to understand a wide category of luminescent materials. The most relevant luminescent materials, such as transition metals, rare-earth materials, actinide-based materials, and organic materials are discussed, along with emerging applications of luminescent materials in biomedicine, solid state devices, and the development of hybrid materials. This book is an important introduction to the underlying scientific concepts needed to understand luminescence, such as atomic and molecular physics and chemistry. Other topics explored cover the latest advances in materials characterization methods, such as Raman spectroscopy, ultrafast spectroscopy, nonlinear spectroscopy, and more. Finally, there is a focus on the materials physics of nanophotonics.
Coulomb Interactions in Particle Beams, Volume 223 in the Advances in Imaging and Electron Physics series, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and computing methods used in all these domains, with this release exploring Coulomb Interactions in Particle Beams.
Nano-scale materials have unique electronic, optical, and chemical properties that make them attractive for a new generation of devices. In the second edition of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics, and Energy Applications, leading experts review the latest advances in research in the understanding, prediction, and methods of production of current and emerging nanomaterials for key applications. The chapters in the first half of the book cover applications of different modeling techniques, such as Green's function-based multiscale modeling and density functional theory, to simulate nanomaterials and their structures, properties, and devices. The chapters in the second half describe the characterization of nanomaterials using advanced material characterization techniques, such as high-resolution electron microscopy, near-field scanning microwave microscopy, confocal micro-Raman spectroscopy, thermal analysis of nanoparticles, and applications of nanomaterials in areas such as electronics, solar energy, catalysis, and sensing. The second edition includes emerging relevant nanomaterials, applications, and updated modeling and characterization techniques and new understanding of nanomaterials.
Metal Oxide-Based Heterostructures: Fabrication and Applications provides information on synthesis strategies, structural and hierarchical features, morphological characteristics of metal oxide-based heterostructures, and their diverse applications. This book begins with an introduction to the various multidimensional heterostructures, synthesis aspects, and techniques used to control the formation of heterostructures. Then, the impact of synthesis routes on the formation of mixed metal oxide heterostructures and their properties are analyzed. The effect of nonmetal doping, metal doping, and composites of metal oxide heterostructures on the properties of heterostructures is also addressed and that also includes opportunities for optimization of the material's performance for specific applications. Special attention is given to the surface characteristics of the metal oxide heterostructures and their impact on the material's performance, and the applications of metal oxide heterostructures in various fields such as environmental remediation, sensing, organic catalysis, photovoltaics, light emitting materials, and hydrogen production.
Advanced Sensor Technology: Biomedical, Environmental, and Construction Applications introduces readers to the past, present and future of sensor technology and its emerging applications in a wide variety of different fields. Organized in five parts, the book covers historical context and future outlook of sensor technology development and emerging applications, the use of sensors throughout many applications in healthcare, health and life science research, public health and safety, discusses chemical sensors used in environmental monitoring and remediation of contaminants, highlights the use of sensors in food, agriculture, fire prevention, automotive and robotics, and more. Final sections look forward at the challenges that must be overcome in the development and use of sensing technology as well as their commercial use, making this book appropriate for the interdisciplinary community of researchers and practitioners interested in the development of sensor technologies.
PV has traditionally been used for electric power in space. Solar panels on spacecraft are usually the sole source of power to run the sensors, active heating and cooling, and communications. Photovoltaics for Space: Key Issues, Missions and Alternative Technologies provides an overview of the challenges to efficiently produce solar power in near-Earth space and beyond: the materials and device architectures that have been developed to surmount these environmental and mission-specific barriers. The book is organized in four sections consisting of detailed introductory and background content as well as a collection of in-depth space environment, materials processing, technology, and mission overviews by international experts. This book will detail how to design and optimize a space power system's performance for power-to-weight ratio, effectiveness at end of operational life (EOL) compared to beginning of operational life (BOL), and specific mission objectives and goals. This book outlines the knowledge required for practitioners and advanced students interested in learning about the background, materials, devices, environmental challenges, missions, and future for photovoltaics for space exploration.
Semiconductors and Semimetals, Volume 111 highlights new advances in the field, with this new volume presenting interesting chapters on Precision Medicine. Each chapter is written by an international board of authors.
Since the advent of the internet, online communities have emerged as a way for users to share their common interests and connect with others with ease. As the possibilities of the online world grew and the COVID-19 pandemic raged across the world, many organizations recognized the utility in not only providing further services online, but also in transitioning operations typically fulfilled in-person to an online space. As society approaches a reality in which most community practices have moved to online spaces, it is essential that community leaders remain knowledgeable on the best practices in cultivating engagement. Community Engagement in the Online Space evaluates key issues and practices pertaining to community engagement in remote settings. It analyzes various community engagement efforts within remote education, online groups, and remote work. This book further reviews the best practices for community engagement and considerations for the optimization of these practices for effective virtual delivery to support emergency environmental challenges, such as pandemic conditions. Covering topics such as community belonging, global health virtual practicum, and social media engagement, this premier reference source is an excellent resource for program directors, faculty and administrators of both K-12 and higher education, students of higher education, business leaders and executives, IT professionals, online community moderators, librarians, researchers, and academicians.
Reliability and Failure Analysis of High-Power LED Packaging provides fundamental understanding of the reliability and failure analysis of materials for high-power LED packaging, with the ultimate goal of enabling new packaging materials. This book describes the limitations of the present reliability standards in determining the lifetime of high-power LEDs due to the lack of deep understanding of the packaging materials and their interaction with each other. Many new failure mechanisms are investigated and presented with consideration of the different stresses imposed by varying environmental conditions. The detailed failure mechanisms are unique to this book and will provide insights for readers regarding the possible failure mechanisms in high-power LEDs. The authors also show the importance of simulation in understanding the hidden failure mechanisms in LEDs. Along with simulation, the use of various destructive and non-destructive tools such as C-SAM, SEM, FTIR, Optical Microscopy, etc. in investigation of the causes of LED failures are reviewed. The advancement of LEDs in the last two decades has opened vast new applications for LEDs which also has led to harsher stress conditions for high-power LEDs. Thus, existing standards and reliability tests need to be revised to meet the new demands for high-power LEDs.
Advances in Metal Oxides and their Composites for Emerging Applications reviews key properties of metal-oxide based composites, including their structural, physicochemical, optical, electrical components and resulting performance in a wide range of diverse applications. Synthetic protocols used to create metal oxides with desirable morphologies, properties and performance for applications in solar energy harvesting, energy storage and environmental remediation are emphasized. Emerging technologies that address important global challenges such as energy shortage, the hazardous effects of non-renewable energy sources, unaffordable energy technologies, and the contaminants present in air and water are also covered. This book is an ideal resource for materials scientists and engineers working in academia and R&D. In addition, it's appropriate for those who either need an introduction to potential research directions or for experienced researchers and practitioners looking for a key reference on the latest advances.
Advances in Imaging and Electron Physics, Volume 224 highlights new advances in the field, with this new volume presenting interesting chapters on Measuring elastic deformation and orientation gradients by scanning electron microscopy - conventional, new and emerging methods, Development of an alternative global method with high angular resolution, Implementing the new global method, Numerical validation of the method and influence of optical distortions, and Applications of the method.
This book is dedicated to the study of the theory of electromagnetism. It is not intended to cover all aspects of the topic, but instead will give a certain perspective, that of its relationship with special relativity. Indeed, special relativity is intrinsic to electromagnetism; thus, this paradigm eliminates some false paradoxes. Electromagnetism also discusses the limit of classical mechanics, and covers problems that arise when phenomena related to the propagation of electromagnetic waves are encountered. These are problems that even the greatest scientists of the last two hundred years have not been able to entirely overcome. This book is directed towards the undergraduate level, and will also support the readers as they move on to advanced technical training, such as an engineering or master's degree.
A comprehensive look combining experimental and theoretical approaches to graphene, nanotubes, and quantum dots-based nanotechnology evaluation and development are including a review of key applications. Graphene, nanotubes, and quantum dots-based nanotechnology review the fundamentals, processing methods, and applications of this key materials system. The topics addressed are comprehensive including synthesis, preparation, both physical and chemical properties, both accepted and novel processing methods, modeling, and simulation. The book provides fundamental information on key properties that impact performance, such as crystal structure and particle size, followed by different methods to analyze, measure, and evaluate graphene, nanotubes, and quantum dots-based nanotechnology and particles. Finally, important applications are covered, including different applications of biomedical, energy, electronics, etc. Graphene, nanotubes, and quantum dots-based nanotechnology is appropriate for those working in the disciplines of nanotechnology, materials science, chemistry, physics, biology, and medicine.
Advanced Nanomaterials and Their Applications in Renewable Energy, Second Edition presents timely topics related to nanomaterials' feasible synthesis and characterization and their application in the energy fields. The book examines the broader aspects of energy use, including environmental effects of disposal of Li-ion and Na batteries and reviews the main energy sources of today and tomorrow, from fossil fuels to biomass, hydropower, storage power and solar energy. The monograph treats energy carriers globally in terms of energy storage, transmission, and distribution, addresses fuel cell-based solutions in transportation, industrial, and residential building, considers synergistic systems, and more. This new edition also offers updated statistical data and references; a new chapter on the synchronous x-ray based analysis techniques and electron tomography, and if waste disposal of energy materials pose a risk to the microorganism in water, and land use; expanding coverage of renewable energy from the first edition; with newer color illustrations.
Xenes: 2D Synthetic Materials Beyond Graphene includes all the relevant information about Xenes thus far reported, focusing on emerging materials and new trends. The book's primary goal is to include full descriptions of each Xene type by leading experts in the area. Each chapter will provide key principles, theories, methods, experiments and potential applications. The book also reviews the key challenges for synthetic 2D materials such as characterization, modeling, synthesis, and integration strategies. This comprehensive book is suitable for materials scientists and engineers, physicists and chemists working in academia and R&D in industry. The discovery of silicene dates back to 2012. Since then, other Xenes were subsequently created with synthetic methods. The portfolio of Xenes includes different chemical elements of the periodic table and hence the related honeycomb-like lattices show a wealth of electronic and optical properties that can be successfully exploited for applications.
Metal Oxides for Optoelectronics and Optics-based Medical Applications reviews recent advances in metal oxides and their mechanisms for optoelectronic, photoluminescent and medical applications. In addition, the book examines the integration of key chemistry concepts with nanoelectronics that can improve performance in a diverse range of applications. Sections place a strong emphasis on synthesis processes that can improve the metal oxides' physical properties and the reflected surface chemical changes that can impact their performance in various devices like light-emitting diodes, luminescence materials, solar cells, etc. Finally, the book discusses the challenges associated with the handling and maintenance of metal oxides crystalline properties. This book will be suitable for academics and those working in R&D in industry looking to learn more about cheaper and more effective methods to produce metal oxides for use in the fields of electronics, photonics, biophotonics and engineering.
Conjugated Polymers for Next-Generation Applications, Volume Two: Energy Storage Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book's emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering. |
![]() ![]() You may like...
Cyber-Physical Systems - Foundations…
Houbing Song, Danda B. Rawat, …
Paperback
Virtual and Mobile Healthcare…
Information Reso Management Association
Hardcover
R11,830
Discovery Miles 118 300
Research Anthology on Agile Software…
Information R Management Association
Hardcover
R15,761
Discovery Miles 157 610
Design and Optimization of Sensors and…
Vinod Kumar Singh, Ratnesh Tiwari, …
Hardcover
R6,390
Discovery Miles 63 900
|