|
|
Books > Science & Mathematics > Biology, life sciences > Human biology & related topics > General
A successful Wall Street trader turned neuroscientist reveals how
risk taking and stress transform our body chemistry
Before he became a world-class scientist, John Coates ran a
derivatives trading desk in New York City. He used the expression
"the hour between dog and wolf" to refer to the moment of
Jekyll-and-Hyde transformation traders passed through when under
pressure. They became cocky and irrationally risk-seeking when on a
winning streak, tentative and risk-averse when cowering from
losses. In a series of groundbreaking experiments, Coates
identified a feedback loop between testosterone and success--one
that can cloud men's judgment in high-pressure decision-making.
Coates demonstrates how our bodies produce the fabled gut feelings
we so often rely on, how stress in the workplace can impair our
judgment and even damage our health, and how sports science can
help us toughen our bodies against the ravages of stress. Revealing
the biology behind bubbles and crashes, "The Hour Between Dog and
Wolf "sheds new and surprising light on issues that affect us all.
The lymphatic system develops and functions in parallel with the
blood circulatory system (termed the "hemovasculature") and
accomplishes transport of interstitial fluids, dietary lipids, and
reverse transport of cholesterol, immune cells, and
antigens-providing a critical homeostatic fluid balance and
transmission of immune cells and mediators back to the
cardiovascular system. Although the daily flow of lymph (normally
1-2 L/day under unstressed conditions) is far lower than that of
daily blood flow (which is 7,500 L/day), without the adequate
functioning of the lymphatics, virtually all organs and tissues
would acutely suffer many different physical and inflammatory
stresses ranging from edema to organ system failure. Although blood
and lymphatic vessels often form in anatomic parallels to one
another, our knowledge of the workings of the lymphatic system, the
fine structure of lymphatic networks, how they function in
different organs, and how they are regulated physiologically and
immunologically are far from parallel; our knowledge of the
lymphatic system still remains at only a tiny fraction of what is
understood about the cardiovascular system. Although both the
cardiovascular and lymphatic systems are important transport
systems, what they transport and how they transport and propel
these very different cargoes could not be more dissimilar. This
book provides an overview of the history of the discovery (and
re-discovery) of the components of the lymphatic system, lymphatic
anatomy, physiological functions of lymphatics, molecular features
of the lymphatic system, and clinical perspectives involving
lymphatics which may be of interest to scientists, clinicians,
patients, and the lay public. We provide a current understanding of
some of the more important structural similarities and differences
between lymphatics and the blood vascular system, their coordinated
control by angiogenic and hemangiogenic growth factors and other
modulators, the fate and lineage determinants which control
lymphatic development, and the roles that lymphatics may play in
several different diseases.
Scientists are deciphering the biology of the tumor cell at a level
of detail that would have been hard to imagine just a decade or so
ago. The development of high-throughput DNA sequencing and genomics
technologies have allowed an understanding of the development,
growth, survival, and spread of cancer cells in the body. From this
information, we now have a basic blueprint or roadmap of how a
single damaged cell can develop into a pre-malignant lesion, a
primary tumor, and finally, a lethal tumor that may spread
throughout the body and resist both medical therapy and host immune
responses. In this book, we provide an overview of our current
understanding of this cancer blueprint, which has been aided both
by the study of familial cancer syndromes, in vitro studies of
cancer cells, and animal models. Three classes of genes have
emerged from these studies: tumor suppressor genes needed for
normal growth control and DNA repair; oncogenes that regulate cell
growth and survival, and epigenetic modifiers, enzymes that
regulate the modification of DNA and the proteins that form
chromatin. Each of these three classes of genes is mutated or
altered at least once in virtually all malignant cancer cells.
Current technologies permit the DNA sequencing of cancer exomes
(coding gene sequencing), whole genomes, transcriptome (all
expressed genes), and DNA methylation profiling. These studies show
that all tumors have unique constellations of mutated, rearranged,
amplified, and deleted genes. Single-cell sequencing further shows
that there is extensive variation in individual cells in the tumor;
that cancers evolve, and have many of the properties of a
multi-cellular entity. Lastly, cancer cells, through mutations in
epigenetic modifiers, can reprogram the genome and unlock entire
developmental and gene expression pathways to adapt and survive in
changing conditions. This reprogramming allows the tumor to elude
the host body's defenses, radiotherapy, chemotherapy, and targeted
therapy that we use in cancer treatment. Understanding this cancer
blueprint paves the way for the development of future therapies to
treat and eliminate cancer.
Environmental heat stress is associated with a marked decrease in
orthostatic tolerance (OT), which is defined as the ability to
stand or sit upright without symptoms of dizziness,
lightheadedness, presyncope, or fainting. In most healthy humans,
the autonomic nervous system makes rapid and balanced adjustments
to heart rate and peripheral blood flow, such that most people are
able to stand up "successfully" most of the time, in most
environments. The goal of this book is to discuss various aspects
of the sympathetic neural response to heat stress, how the
sympathetic nervous system coordinates the successful integrative
physiological response to orthostasis, and what happens when it
encounters both challenges simultaneously. We include overviews of
mechanisms of thermoregulation and blood pressure regulation in
humans, with particular focus on control of cardiac output and
neurovascular control mechanisms during heat stress. We discuss the
implications that these changes have for distribution of peripheral
blood flow and, in particular, for blood flow to the cerebral
circulation. The added stressor of dehydration is also discussed,
as it so often goes hand in hand with heat stress. We end with a
brief presentation of countermeasures against the decreases in OT
with heat stress.
The kidney is innervated with efferent sympathetic nerve fibers
reaching the renal vasculature, the tubules, the juxtaglomerular
granular cells, and the renal pelvic wall. The renal sensory nerves
are mainly found in the renal pelvic wall. Increases in efferent
renal sympathetic nerve activity reduce renal blood flow and
urinary sodium excretion by activation of 1-adrenoceptors and
increase renin secretion rate by activation of 1-adrenoceptors. In
response to normal physiological stimulation, changes in efferent
renal sympathetic nerve activity contribute importantly to
homeostatic regulation of sodium and water balance. The renal
mechanosensory nerves are activated by stretch of the renal pelvic
tissue produced by increases in renal pelvic tissue of a magnitude
that may occur during increased urine flow rate. Under normal
conditions, the renal mechanosensory nerves activated by stretch of
the sensory nerves elicits an inhibitory renorenal reflex response
consisting of decreases in efferent renal sympathetic nerve
activity leading to natriuresis. Increasing efferent sympathetic
nerve activity increases afferent renal nerve activity which, in
turn, decreases efferent renal sympathetic nerve activity by
activation of the renorenal reflexes. Thus, activation of the
afferent renal nerves buffers changes in efferent renal sympathetic
nerve activity in the overall goal of maintaining sodium balance.
In pathological conditions of sodium retention, impairment of the
inhibitory renorenal reflexes contributes to an inappropriately
increased efferent renal sympathetic nerve activity in the presence
of sodium retention. In states of renal disease or injury, there is
a shift from inhibitory to excitatory reflexes originating in the
kidney. Studies in essential hypertensive patients have shown that
renal denervation results in long-term reduction in arterial
pressure, suggesting an important role for the efferent and
afferent renal nerves in hypertension.
|
You may like...
Bi-plane
R189
R169
Discovery Miles 1 690
|