![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
Applications, Processes, and Controls is the second volume in the Handbook for Critical Cleaning, Second Edition. Should you clean your product during manufacturing? If so, when and how? Cleaning is essential for proper performance, optimal quality, and increased sales. Inadequate cleaning of product elements can lead to catastrophic failure of the entire system and serious hazards to individuals and the general public. Gain a competitive edge with proven cleaning and contamination-control strategies A decade after the bestselling original, the Handbook for Critical Cleaning, Second Edition helps manufacturers meet today's challenges, providing practical information and perspective about cleaning chemistries, equipment, processes, and applications. With 90% new or revised chapters plus supplementary online material, the handbook has grown into two comprehensive volumes: Cleaning Agents and Systems, and Applications, Processes, and Controls. Helping manufacturers become more efficient and productive, these books: Show how to increase profitability and meet both existing and expected product demand Clarify the sea of print and Internet information about cleaning chemistries and techniques Address challenges of performance, miniaturization, and cost, as well as regulatory and supply chain pressures Offer clearly written guidance from the viewpoints of more than 70 leading industry contributors in technical, management, academic, and regulatory disciplines Overview chapters by the editors, industry icons Barbara and Ed Kanegsberg, meld the different viewpoints and compile and critique the options. The result is a complete, cohesive, balanced perspective that helps manufacturers better select, implement, and maintain a quality, value-added cleaning process. The second volume, Handbook for Critical Cleaning: Applications, Processes, and Controls, addresses how to implement, validate, monitor, and maintain a critical cleaning process. Topics include cleanrooms, materials compatibility, worker safety, sustainability, and environmental constraints. The book shows readers how to draw from diverse disciplines-including aerospace, art conservation, electronics, food, life sciences, military, optics, and semiconductors-to achieve superior productivity.
The idea of this book is to present the up-to-date research results on Nitrate Esters as explosive materials. It covers many aspects including the material structures, nitrating agent, chemical synthesis devices, preparation technology, and applications etc. In particular, this work sheds light on the comprehensive utilization and thorough destruction of the used Nitrate Easters which is crucial for preventing repeated pollution. This is a highly informative and instructive book providing insight for the researchers working on nitrating theory, energetic materials and chemical equipments.
This immensely practical guide to PIV provides a condensed, yet exhaustive guide to most of the information needed for experiments employing the technique. This second edition has updated chapters on the principles and extra information on microscopic, high-speed and three component measurements as well as a description of advanced evaluation techniques. What's more, the huge increase in the range of possible applications has been taken into account as the chapter describing these applications of the PIV technique has been expanded.
New and Future Developments in Microbial Biotechnology and Bioengineering: Recent Advances in Application of Fungi and Fungal Metabolites: Biotechnological Interventions and Futuristic Approaches is an invaluable resource for researchers planning to work in applied biotechnological interventions and futuristic approaches to fungi and fungal metabolite utilization. Special emphasis is placed on new research relating to fungal-based recombinant DNA technology and genomics analysis which place yeasts and filamentous fungi at the forefront of various contemporary commercial applications. Written in an easy-to-follow language by active researchers, the book presents cutting-edge fungal biotechnological applications in a manner that is accessible to all.
New and Future Developments in Microbial Biotechnology and Bioengineering: Recent Advances in Application of Fungi and Fungal Metabolites: Environmental and Industrial Aspects provides a comprehensive overview of recent development and applied aspects of fungi and its metabolites in environmental and industrial settings. Fungi and fungal metabolites have great prospects for developing new products in a wide range of sectors. Many fungal metabolites are environmentally friendly, clean, non-toxic agents used for environmental management practices. This book offers a systems approach and provides a means to share the latest developments and advances about the exploitation of fungal products, including their vide uses in the field of environment and industry.
Environmentally Degradable Materials (EDPs) should replace petroleum-based plastics where recycling is not viable for logistic or labor cost reason. This book discusses the general background of obtaining such systems, compatibilization methodologies, control of the rate of degradation and final products after degradation, life time assessment, toxicological aspects, applications and market aspects. This book is a complete guide to the subject of biodegradable materials based on multi-component polymeric systems, mainly such as hydrogels, and interpenetrating polymeric networks. This book is a complete guide to the subject of biodegradable materials based on multicomponent polymeric systems such as mainly hydrogels, interpenetrating polymeric networks.
Surface and colloid chemistry principles impact many aspects of our daily lives, ranging from the cleaners and cosmetics we use to combustion engines and cement. Exploring the range of this field of study, Surface and Colloid Chemistry provides a detailed analysis of its principles and applications and demonstrates how they relate to natural phenomena and industrial processes. Surface and colloid chemistry at work in nature and industry:
The book begins with an introduction to surfaces and colloids. It describes basic considerations regarding liquids and capillarity, and examines the liquid-solid interface phenomena. It explores the physicochemical properties of surfactants, Langmuir-Blodgett films, adsorption on solid surfaces, and adsorption as it relates to cleaning processes. Then the author examines colloidal systems and thin liquid films before moving on to emulsion science and technology. The final chapter provides examples of applications in science and a range of industries. Examples and Illustrations Integrating real-world examples throughout the text, this volume stimulates readers to consider both fundamental theory and industrial applications. More than 100 figures elucidate the concepts described in the text. Sample questions and answers are provided where appropriate, along with detailed data and discussions. Pertinent references are offered to facilitate further study.
The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein systems and their identifi cation methods. Then, the traditional Volterra model is extended to DPS, which results in the spatio-temporal Volterra model and its identification algorithm. All these methods are based on linear time/space separation. Sometimes, the nonlinear time/space separation can play a better role in modeling of very complex processes. Thus, a nonlinear time/space separation based neural modeling is also presented for a class of DPS with more complicated dynamics. Finally, all these modeling approaches are successfully applied to industrial thermal processes, including a catalytic rod, a packed-bed reactor and a snap curing oven. The work is presented giving a unifi ed view from time/space separation. The book also illustrates applications to thermal processes in the electronics packaging and chemical industry. This volume assumes a basic knowledge about distributed parameter systems, system modeling and identifi cation. It is intended for researchers, graduate students and engineers interested in distributed parameter systems, nonlinear systems, and process modeling and control.
Although computer technology has dramatically improved the analysis of complex transport phenomena, the methodology has yet to be effectively integrated into engineering curricula. The huge volume of literature associated with the wide variety of transport processes cannot be appreciated or mastered without using innovative tools to allow comprehension and study of these processes. Connecting basic principles with numerical methodology for solving the conservations laws, Computational Transport Phenomena for Engineering Analyses presents the topic in terms of modern engineering analysis. The book includes a production quality computer source code for expediting and illustrating analyses of mass, momentum, and energy transport. The text covers transport phenomena with examples that extend from basic empirical analyses to complete numerical analyses. It includes a computational transport phenomena (CTP) code written in Fortran and developed and owned by the authors. The code does not require a lease and can run on a PC or a supercomputer. The authors also supply the source code, allowing users to modify the code to serve their particular needs, once they are familiar with the code. Using the CTP code, grid generation and solution procedures are described and visual solution presentations are illustrated thus offering extensive coverage of the methodology for a wide range of applications. The authors illustrate and emphasize that the very general solutions afforded by solving the unsteady, multidimensional transport equations for real multicomponent fluids describe an immense body of physical processes. Bringing together a wealth of professional and instructional experience, this book stresses a problem-solving approach that uses one set of computational and graphical tools to describe all aspects of the analysis. It provides understanding of the principles involved so that code improvements and/or use of commercial codes can be accomplished knowledgeably.
This book covers different aspects of gas injection, from the classic pressure maintenance operation to enhanced oil recovery (EOR), underground gas storage (UGS), and carbon capture and storage (CCS). The authors detail the unique characteristics and specific criteria of each application, including: material balance equations phase behaviour reservoir engineering well design operating aspects surface facilities environmental issues Examples, data, and simulation codes are provided to enable the reader to gain an in-depth understanding of these applications. Fundamentals and Practical Aspects of Gas Injection will be of use to practising engineers in the fields of reservoir engineering, and enhanced oil recovery. It will also be of interest to researchers, academics, and graduate students working in the field of petroleum engineering.
Touted as the new darling of the chemical industry, alkyl polyglycosides are gaining in popularity due to the fact that they are readily biodegradable, low-toxic, and made from renewable resources. Sugar-Based Surfactants compiles the most recent and relevant aspects of sugar-based surfactants, including self-association, phase behavior, and interfacial properties. Focusing on both colloidal and interfacial science, the book deals with the adsorption of surfactants in both the air-liquid and solid-liquid interfaces. It also covers new advances in surfactant science, such as the development of a family of potent surface active agents that are non-toxic, and thus usable in ubiquitous consumer products
Heterogeneous Photocatalysis: Relationships with Heterogeneous Catalysis and Perspectives highlights the differences between thermal-catalysis and photo-catalysis and indicates borderlines, in particular, the possible synergism between them. The book outlines the basic aspect of thermal- and photo-catalysis, along with the most important characterization techniques. In addition, it presents case studies of thermal-catalytic and photo-catalytic or thermal-photo-catalytic reactions and includes a comparison between the results obtained using an inorganic solid as thermal catalyst and photocatalyst for the same reaction, and in the same setup. Final sections offer information on the preparation methods of (photo)catalysts, various techniques used for their characterization, engineering and economical aspects. This book will be a valuable reference source for students and researchers involved in heterogeneous photocatalysis and catalysis, chemistry, chemical engineering, materials science, materials engineering, environment engineering, nanotechnology and green chemistry.
Modern mineral processing plants are required to be safe and profitable and to minimize their environmental impact. The consequent quest for higher operational standards at reduced cost is leading the industry towards automation technologies as capital-effective means of attaining these objectives. "Advanced Control and Supervision of Mineral Processing Plants" describes the use of dynamic models of major items of mineral processing equipment in the design of control, data reconciliation and soft-sensing schemes; through examples, it illustrates tools integrating simulation and control system design for comminuting circuits and flotation columns. Full coverage is given to the design of soft sensors based on either single-point measurements or more complex measurements like images. The chief issues concerning steady-state and dynamic data reconciliation and their employment in the creation of instrument architecture and fault diagnosis are surveyed. In consideration of the widespread use of distributed control and information management systems in mineral processing, the book describes the current platforms and toolkits available for implementing such advanced systems. Applications of the techniques described in real mineral processing plants are used to highlight their benefits; information for all of the examples, together with supporting MATLAB(r) code can be found at www.springer.com/978-1-84996-105-9. The provision of valuable tools and information on the use of modern software platforms and methods will benefit engineers working in the mineral processing industries, and control engineers and academics interested in the real industrial practicalities of new control ideas. The book will also be of interest to graduate students in chemical, metallurgical and electronic engineering looking for applications of control technology in the treatment of raw materials.
An innovative approach that helps students move from the classroom to professional practice This text offers a comprehensive, unified methodology to analyze and design chemical reactors, using a reaction-based design formulation rather than the common species-based design formulation. The book's acclaimed approach addresses the weaknesses of current pedagogy by giving readers the knowledge and tools needed to address the technical challenges they will face in practice. "Principles of Chemical Reactor Analysis and Design" prepares readers to design and operate real chemical reactors and to troubleshoot any technical problems that may arise. The text's unified methodology is applicable to both single and multiple chemical reactions, to all reactor configurations, and to all forms of rate expression. This text also . . . Describes reactor operations in terms of dimensionless design equations, generating dimensionless operating curves that depict the progress of individual chemical reactions, the composition of species, and the temperature. Combines all parameters that affect heat transfer into a single dimensionless number that can be estimated a priori. Accounts for all variations in the heat capacity of the reacting fluid. Develops a complete framework for economic-based optimization of reactor operations. Problems at the end of each chapter are categorized by their level of difficulty from one to four, giving readers the opportunity to test and develop their skills. Graduate and advanced undergraduate chemical engineering students will find that this text's unified approach better prepares them for professional practice by teaching them the actual skills needed to design and analyze chemical reactors.
This book provides a comprehensive and detailed description of the various mechanisms of the CCS-EOR process. Whereas previous texts have primarily focused on carbon capture and storage (CCS) and enhanced oil recovery (EOR) separately, this book provides a general overview of both technologies when used together. Coupled CCS-EOR technology has become increasingly important, as it overcomes the respective shortcomings of the two technologies. The book presents an integrated numerical model including the hysteresis effect, solubility trapping, miscibility, and formation damage by asphaltene deposition. The experimental and model-based evaluation of fluid properties is also discussed. The book concludes by discussing the latest research into CO2 storage coupled with EOR, most notably performance control by including additives in CO2 injection, and CO2 injection into shale reservoirs. Ideally suited for graduate students and researchers in the fields of carbon capture, utilisation, and storage, the book shares essential insights into maximising the efficiency of CCS and EOR alike.
Polymer chemistry and technology form one of the major areas of
molecular and materials science. This field impinges on nearly
every aspect of modern life, from electronics technology, to
medicine, to the wide range of fibers, films, elastomers, and
structural materials on which everyone depends. Although most of
these polymers are organic materials, attention is being focused
increasingly toward polymers that contain inorganic elements as
well as organic components. The goal of Inorganic Polymers is to
provide a broad overview of inorganic polymers in a way that will
be useful to both the uninitiated and those already working in this
field. There are numerous reasons for being interested in inorganic
polymers. One is the simple need to know how structure affects the
properties of a polymer, particularly outside the well-plowed area
of organic materials. Another is the bridge that inorganic polymers
provide between polymer science and ceramics. More and more
chemistry is being used in the preparation of ceramics of carefully
controlled structure, and inorganic polymers are increasingly
important precursor materials in such approaches.
Carbon nanotubes, with their extraordinary mechanical and unique electronic properties, have garnered much attention in the past five years. With a broad range of potential applications including nanoelectronics, composites, chemical sensors, biosensors, microscopy, nanoelectromechanical systems, and many more, the scientific community is more motivated than ever to move beyond basic properties and explore the real issues associated with carbon nanotube-based applications. Taking a comprehensive look at this diverse and dynamic subject, Carbon Nanotubes: Science and Applications describes the field's various aspects, including properties, growth, and processing techniques, while focusing on individual major application areas. Well-known authors who practice the craft of carbon nanotubes on a daily basis present an overview on structures and properties, and discuss modeling and simulation efforts, growth by arc discharge, laser ablation, and chemical vapor deposition. Applications become the focal point in chapters on scanning probe microscopy, carbon nanotube-based diodes and transistors, field emission, and the development of chemical and physical sensors, biosensors, and composites. Presenting up-to-date literature citations that express the current state of the science, this book fully explores the development phase of carbon nanotube-based applications. It is a valuable resource for engineers, scientists, researchers, and professionals in a wide range of disciplines whose focus remains on the power and promise of carbon nanotubes. Editor Meyya Meyyappan will receive the Pioneer Award in Nanotechnology from the IEEE Nanotechnology Council at the IEEE Nano Conference in Portland, Oregon in August, 2011
Organized on a product category basis, this book provides a review of, and introduction to, the cosmetics and toiletries industry in a readily digestible form. The point of view is that of the chemist, whilst extensive coverage of economic and market recognizes the importance of these constraints. Authors discuss the rationale of raw material selection, the formulation and development of products that meet the demands of an international market place, product performances, and safety and quality aspects. Regulatory issues are considered from a worldwide perspective. The editors (British and American) have assembled an international team of contributors all of whom have extensive experience from distinguished careers within the industry. This book is for chemists and engineers, especially those new to the industry.
Adsorption is one of the method that is in use for remediation of contaminated water. The experimental factors affecting the batch mode of adsorption of various metals and inorganic anions are discussed in this book. The elemental contaminants have been categorized into four major categories i.e. major toxic elements; essential elements having toxicity on excessive exposure; miscellaneous elements having undetermined effects; non-toxic elements having trivial or unidentified significance. In addition, anions like nitrate, perchlorate and sulphate as water contaminants are considered. This unique volume fills a niche in the area of water treatment. Key Features: Provides practitioners with the background they need to understand and apply batch adsorption processes to the purification of water Describes the actions of adsorption capacity or percentage removal with respect to factors affecting the adsorption process Excellent source of information for those working in the industry for remediation of metals and anions Discusses the current era of Anthropocene which is highly dependent on the anthropogenic mineral sources for its sustenance
The in-lab preparation of certain chemical reagents provides a number of advantages over purchasing various commercially prepared samples. This is especially true in isolated regions where acquiring the necessary substances from overseas can cause undue delay and inconvenience due to restrictions on the transportation of hazardous chemicals. An invaluable resource for chemists in a variety of environments, Small-Scale Synthesis of Laboratory Reagents with Reaction Modeling presents efficient, sensible, and versatile methods for the laboratory preparation of common chemical reagents. Rapid, reliable synthesis Designed to facilitate smooth experimentation in the lab, this volume presents preparations chosen for their short duration, availability of apparatus, high yield, and high purity of the product. Adding an educational component, the book also discusses fundamental processes in inorganic chemistry, presenting original modeling of reactions and their practical implementation. Theoretical aspects are discussed to a greater extent than is usual in synthetic literature in cases where there is a direct impact on experimental parameters, such as the reaction time, yield, and purity of the product. More than 30 convenient, time-saving preparations Focusing on simple synthesis of high-purity reagents, the book contains over 30 presentations, a substantial number of which are mathematically modeled for the first time. Most syntheses can be carried out in one day using common laboratory equipment, making this volume a valuable and time-saving tool.
This book discusses effective and alternative uses for natural gas (NG) and highlights the utilization of NG in the field of methane activation and chemical production. It details the techniques used during the reforming process of petrochemical and bio-derived fuels and it presents cutting-edge research that describes the utilization of NG that enables it to be more cost-effective and eliminate the expensive greenhouse gas emitting process of hydrogen production. The book addresses three major topics: NG use in upstream heavy oil and bitumen upgrading, NG and its use in downstream oil refining through co-aromatization of various feeds in the petrochemical industry, and NG use in the upgrading of bio-derived fuels and discusses alternative uses of NG. In-depth chapters demonstrate uses for NG beyond heating homes, through catalysis and in-situ hydrogen donation, and its potential applications for the petrochemical and biofuel industries.
In the tradition of the popular first edition, Analysis of Surfactants, Second Edition offers a comprehensive and practical account of analysis methods for determining and understanding commercially important surfactants-individually and in compounds. Combining a complete review of the literature with a variety of evaluation procedures and the specifications for commercial products, this useful reference explores the key stages and latest developments for surfactant applications. This edition has been thoroughly expanded and features new sections on capillary electrophoresis, ether carboxylates, and ester quats. It is also more globally accessible with foreign language citations and SI units. Containing over 2400 references, drawings, tables, and equations, Analysis of Surfactants, Second Edition is an recommended reference for physical, surface, colloid, and oil chemists; analytical, research, and quality assurance chemists working in the soap and detergent, pharmaceuticals, and cosmetic industries; regulatory and food scientists; and upper-level undergraduate and graduate students in these disciplines.
Plants produce secondary metabolites that humans harness for their own benefit. About half of drugs currently in clinical use are based on these chemicals found in nature. Chemistry of Natural Products covers secondary metabolites present in medicinal plants and their biosynthesis, biological activities, and isolation and separation techniques. This book is ideal for researchers in the areas of biochemistry, medicine, and pharmacology.
A compilation of the most important aerosol chemical processes involved in known scientific and technological disciplines, Aerosol Chemical Processes in the Environment serves as a handbook for aerosol chemistry. Aerosol science is interdisciplinary, interfacing with many environmental, biological and technological research fields. Aerosols and aerosol research play an important role in both basic and applied scientific and technological fields. Interdisciplinary cooperation is useful and necessary. Aerosol Chemical Processes in the Environment uses several examples to show the impact of aerosol chemistry in several different fields, mainly in basic and atmospheric research. The book describes the most important chemical processes involved in the various scientific and technological disciplines. |
You may like...
Synthesis and Chemistry of…
Don R. Baker, Joseph G. Fenyes, …
Hardcover
R2,086
Discovery Miles 20 860
Advances in the Use of Liquid…
Achille Cappiello, Pierangela Palma
Hardcover
R6,341
Discovery Miles 63 410
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
|