![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
This book gives the definitive mathematical answer to what thermodynamics really is: a variational calculus applied to probability distributions. Extending Gibbs's notion of ensemble, the Author imagines the ensemble of all possible probability distributions and assigns probabilities to them by selection rules that are fairly general. The calculus of the most probable distribution in the ensemble produces the entire network of mathematical relationships we recognize as thermodynamics. The first part of the book develops the theory for discrete and continuous distributions while the second part applies this thermodynamic calculus to problems in population balance theory and shows how the emergence of a giant component in aggregation, and the shattering transition in fragmentation may be treated as formal phase transitions. While the book is intended as a research monograph, the material is self-contained and the style sufficiently tutorial to be accessible for self-paced study by an advanced graduate student in such fields as physics, chemistry, and engineering.
Recent Developments in Bioenergy Research reviews all these topics, reports recent research findings, and presents potential solutions to challenging issues. The book consolidates the most recent research on the (bio)technologies, concepts and commercial developments that are currently in progress on different types of widely-used biofuels and integrated biorefineries across biochemistry, biotechnology, biochemical engineering and microbiology. Chapters include very recent/emerging topics, such as non-ionic and ionic liquids/surfactants for enhancement of lignocellulose enzymatic hydrolysis and lignocellulose biomass as a rich source of bio-ionic liquids. The book is a useful source of information for those working in the area of- industrial wastewater treatment and microbial fuel cells, but is also a great resource for senior undergraduate and graduate students, researchers, professionals, biochemical engineers and other interested individuals/groups working in the field of biofuel/bioenergy.
Cleaning Agents and Systems is the first volume in the Handbook for
Critical Cleaning, Second Edition. Should you clean your product during manufacturing? If so, when and how? Cleaning is essential for proper performance, optimal quality, and increased sales. Inadequate cleaning of product elements can lead to catastrophic failure of the entire system and serious hazards to individuals and the general public. Gain a competitive edge with proven cleaning and contamination-control strategies A decade after the bestselling original, the Handbook for
Critical Cleaning, Second Edition helps manufacturers meet today 's
challenges, providing practical information and perspective about
cleaning chemistries, equipment, processes, and applications. With
90% new or revised chapters plus supplementary online material, the
handbook has grown into two comprehensive volumes: Cleaning Agents
and Systems and Applications, Processes, and Controls. Helping manufacturers become more efficient and productive, these books:
Overview chapters by the editors, industry icons Barbara and Ed Kanegsberg, meld the different viewpoints and compile and critique the options. The result is a complete, cohesive, balanced perspective that helps manufacturers better select, implement, and maintain a quality, value-added cleaning process. The first volume, Handbook for Critical Cleaning: Cleaning Agents and Systems, gives manufacturers a practical understanding of the variety and functions of cleaning chemistries and cleaning, rinsing, and drying equipment. Topics include aqueous, solvent, and "non-chemical" approaches. Readers can compare process costs, performance, and regulatory issues, and then choose their best option.
Applications, Processes, and Controls is the second volume in the Handbook for Critical Cleaning, Second Edition. Should you clean your product during manufacturing? If so, when and how? Cleaning is essential for proper performance, optimal quality, and increased sales. Inadequate cleaning of product elements can lead to catastrophic failure of the entire system and serious hazards to individuals and the general public. Gain a competitive edge with proven cleaning and contamination-control strategies A decade after the bestselling original, the Handbook for Critical Cleaning, Second Edition helps manufacturers meet today's challenges, providing practical information and perspective about cleaning chemistries, equipment, processes, and applications. With 90% new or revised chapters plus supplementary online material, the handbook has grown into two comprehensive volumes: Cleaning Agents and Systems, and Applications, Processes, and Controls. Helping manufacturers become more efficient and productive, these books: Show how to increase profitability and meet both existing and expected product demand Clarify the sea of print and Internet information about cleaning chemistries and techniques Address challenges of performance, miniaturization, and cost, as well as regulatory and supply chain pressures Offer clearly written guidance from the viewpoints of more than 70 leading industry contributors in technical, management, academic, and regulatory disciplines Overview chapters by the editors, industry icons Barbara and Ed Kanegsberg, meld the different viewpoints and compile and critique the options. The result is a complete, cohesive, balanced perspective that helps manufacturers better select, implement, and maintain a quality, value-added cleaning process. The second volume, Handbook for Critical Cleaning: Applications, Processes, and Controls, addresses how to implement, validate, monitor, and maintain a critical cleaning process. Topics include cleanrooms, materials compatibility, worker safety, sustainability, and environmental constraints. The book shows readers how to draw from diverse disciplines-including aerospace, art conservation, electronics, food, life sciences, military, optics, and semiconductors-to achieve superior productivity.
Shorter reaction times, higher product yields, and enhanced selectivity are some of the advantages microwave heating has over conventional methods, causing its use to transition from a curiosity to mainstream, both in industrial and academic settings. Microwave Heating as a Tool for Sustainable Chemistry showcases the application of microwave heating in a number of areas of preparative chemistry as well as in the biosciences. From organic chemistry to materials and biological applications The book begins with an introduction to microwave heating, the physical concepts behind it, its application in synthetic chemistry, and commercially available microwave equipment. It shows how microwave heating can be used to facilitate the clean and sustainable synthesis of organic compounds. The authors examine microwave heating as a tool for sustainable polymer chemistry, with discussions of the use of alternative solvents and feedstocks, the design of degradable polymeric materials, and recycling polymers. They then discuss the significant contribution made by microwave-promoted synthesis in the drug discovery process, with a focus on how the technology has been used to generate discovery chemistry libraries and as a tool for medicinal chemists. Other topics examined in this application-driven text include the use of microwave heating in the preparation of inorganic and organometallic compounds, in the production of inorganic materials, and in the area of biosciences. Academic and industrial settings The book examines the scale-up of microwave-promoted chemistry and describes the various approaches and the current commercially available microwave reactors available for scale-up. It also discusses microwave heating as a tool for teaching in the undergraduate organic chemistry laboratory. It explores curriculum, the broad range of reactions that can be performed, and the incorporation of green chemistry principles. The author maintains a website with supplemental information.
The idea of this book is to present the up-to-date research results on Nitrate Esters as explosive materials. It covers many aspects including the material structures, nitrating agent, chemical synthesis devices, preparation technology, and applications etc. In particular, this work sheds light on the comprehensive utilization and thorough destruction of the used Nitrate Easters which is crucial for preventing repeated pollution. This is a highly informative and instructive book providing insight for the researchers working on nitrating theory, energetic materials and chemical equipments.
Environmentally Degradable Materials (EDPs) should replace petroleum-based plastics where recycling is not viable for logistic or labor cost reason. This book discusses the general background of obtaining such systems, compatibilization methodologies, control of the rate of degradation and final products after degradation, life time assessment, toxicological aspects, applications and market aspects. This book is a complete guide to the subject of biodegradable materials based on multi-component polymeric systems, mainly such as hydrogels, and interpenetrating polymeric networks. This book is a complete guide to the subject of biodegradable materials based on multicomponent polymeric systems such as mainly hydrogels, interpenetrating polymeric networks.
This immensely practical guide to PIV provides a condensed, yet exhaustive guide to most of the information needed for experiments employing the technique. This second edition has updated chapters on the principles and extra information on microscopic, high-speed and three component measurements as well as a description of advanced evaluation techniques. What's more, the huge increase in the range of possible applications has been taken into account as the chapter describing these applications of the PIV technique has been expanded.
New and Future Developments in Microbial Biotechnology and Bioengineering: Recent Advances in Application of Fungi and Fungal Metabolites: Biotechnological Interventions and Futuristic Approaches is an invaluable resource for researchers planning to work in applied biotechnological interventions and futuristic approaches to fungi and fungal metabolite utilization. Special emphasis is placed on new research relating to fungal-based recombinant DNA technology and genomics analysis which place yeasts and filamentous fungi at the forefront of various contemporary commercial applications. Written in an easy-to-follow language by active researchers, the book presents cutting-edge fungal biotechnological applications in a manner that is accessible to all.
New and Future Developments in Microbial Biotechnology and Bioengineering: Recent Advances in Application of Fungi and Fungal Metabolites: Environmental and Industrial Aspects provides a comprehensive overview of recent development and applied aspects of fungi and its metabolites in environmental and industrial settings. Fungi and fungal metabolites have great prospects for developing new products in a wide range of sectors. Many fungal metabolites are environmentally friendly, clean, non-toxic agents used for environmental management practices. This book offers a systems approach and provides a means to share the latest developments and advances about the exploitation of fungal products, including their vide uses in the field of environment and industry.
Focusing on current and future uses of microbes as production organisms, this practice-oriented textbook complements traditional texts on microbiology and biotechnology. The editors have brought together leading researchers and professionals from the entire field of industrial microbiology and together they adopt a modern approach to a well-known subject. Following a brief introduction to the technology of microbial processes, the twelve most important application areas for microbial technology are described, from crude bulk chemicals to such highly refined biomolecules as enzymes and antibodies, to the use of microbes in the leaching of minerals and for the treatment of municipal and industrial waste. In line with their application-oriented topic, the authors focus on the "translation" of basic research into industrial processes and cite numerous successful examples. The result is a first-hand account of the state of the industry and the future potential for microbes in industrial processes. Interested students of biotechnology, bioengineering, microbiology and related disciplines will find this a highly useful and much consulted companion, while instructors can use the case studies and examples to add value to their teaching.
Surface and colloid chemistry principles impact many aspects of our daily lives, ranging from the cleaners and cosmetics we use to combustion engines and cement. Exploring the range of this field of study, Surface and Colloid Chemistry provides a detailed analysis of its principles and applications and demonstrates how they relate to natural phenomena and industrial processes. Surface and colloid chemistry at work in nature and industry:
The book begins with an introduction to surfaces and colloids. It describes basic considerations regarding liquids and capillarity, and examines the liquid-solid interface phenomena. It explores the physicochemical properties of surfactants, Langmuir-Blodgett films, adsorption on solid surfaces, and adsorption as it relates to cleaning processes. Then the author examines colloidal systems and thin liquid films before moving on to emulsion science and technology. The final chapter provides examples of applications in science and a range of industries. Examples and Illustrations Integrating real-world examples throughout the text, this volume stimulates readers to consider both fundamental theory and industrial applications. More than 100 figures elucidate the concepts described in the text. Sample questions and answers are provided where appropriate, along with detailed data and discussions. Pertinent references are offered to facilitate further study.
The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein systems and their identifi cation methods. Then, the traditional Volterra model is extended to DPS, which results in the spatio-temporal Volterra model and its identification algorithm. All these methods are based on linear time/space separation. Sometimes, the nonlinear time/space separation can play a better role in modeling of very complex processes. Thus, a nonlinear time/space separation based neural modeling is also presented for a class of DPS with more complicated dynamics. Finally, all these modeling approaches are successfully applied to industrial thermal processes, including a catalytic rod, a packed-bed reactor and a snap curing oven. The work is presented giving a unifi ed view from time/space separation. The book also illustrates applications to thermal processes in the electronics packaging and chemical industry. This volume assumes a basic knowledge about distributed parameter systems, system modeling and identifi cation. It is intended for researchers, graduate students and engineers interested in distributed parameter systems, nonlinear systems, and process modeling and control.
Discussing the manufacture technology of pressure-sensitive adhesive and products, Volume 2 of the "Handbook of Pressure-Sensitive Adhesives and Products" includes the synthesis of pressure-sensitive raw materials and the design and formulation of pressure-sensitive adhesives. Taking into account monomers, polymerization methods, and polymerization technology, it addresses the offline and inline synthesis of pressure-sensitive raw materials and adhesives. The book describes the main formulation components, along with important chemical and technological additives, and considers the role of formulation as it correlates to formulation technology and equipment. It also highlights the components and build-up of pressure-sensitive products, including the equipment and methods involved in coating, converting, and confectionating.
In the development of next-generation nanoscale devices, higher speed and lower power operation is the name of the game. Increasing reliance on mobile computers, mobile phone, and other electronic devices demands a greater degree of speed and power. As chemical mechanical planarization (CMP) progressively becomes perceived less as black art and more as a cutting-edge technology, it is emerging as the technology for achieving higher performance devices. Nanoparticle Engineering for Chemical-Mechanical Planarization explains the physicochemical properties of nanoparticles according to each step in the CMP process, including dielectric CMP, shallow trend isolation CMP, metal CMP, poly isolation CMP, and noble metal CMP. The authors provide a detailed guide to nanoparticle engineering of novel CMP slurry for next-generation nanoscale devices below the 60nm design rule. They present design techniques using polymeric additives to improve CMP performance. The final chapter focuses on novel CMP slurry for the application to memory devices beyond 50nm technology. Most books published on CMP focus on the polishing process, equipment, and cleaning. Even though some of these books may touch on CMP slurries, the methods they cover are confined to conventional slurries and none cover them with the detail required for the development of next-generation devices. With its coverage of fundamental concepts and novel technologies, this book delivers expert insight into CMP for all current and next-generation systems.
Although computer technology has dramatically improved the analysis of complex transport phenomena, the methodology has yet to be effectively integrated into engineering curricula. The huge volume of literature associated with the wide variety of transport processes cannot be appreciated or mastered without using innovative tools to allow comprehension and study of these processes. Connecting basic principles with numerical methodology for solving the conservations laws, Computational Transport Phenomena for Engineering Analyses presents the topic in terms of modern engineering analysis. The book includes a production quality computer source code for expediting and illustrating analyses of mass, momentum, and energy transport. The text covers transport phenomena with examples that extend from basic empirical analyses to complete numerical analyses. It includes a computational transport phenomena (CTP) code written in Fortran and developed and owned by the authors. The code does not require a lease and can run on a PC or a supercomputer. The authors also supply the source code, allowing users to modify the code to serve their particular needs, once they are familiar with the code. Using the CTP code, grid generation and solution procedures are described and visual solution presentations are illustrated thus offering extensive coverage of the methodology for a wide range of applications. The authors illustrate and emphasize that the very general solutions afforded by solving the unsteady, multidimensional transport equations for real multicomponent fluids describe an immense body of physical processes. Bringing together a wealth of professional and instructional experience, this book stresses a problem-solving approach that uses one set of computational and graphical tools to describe all aspects of the analysis. It provides understanding of the principles involved so that code improvements and/or use of commercial codes can be accomplished knowledgeably.
Touted as the new darling of the chemical industry, alkyl polyglycosides are gaining in popularity due to the fact that they are readily biodegradable, low-toxic, and made from renewable resources. Sugar-Based Surfactants compiles the most recent and relevant aspects of sugar-based surfactants, including self-association, phase behavior, and interfacial properties. Focusing on both colloidal and interfacial science, the book deals with the adsorption of surfactants in both the air-liquid and solid-liquid interfaces. It also covers new advances in surfactant science, such as the development of a family of potent surface active agents that are non-toxic, and thus usable in ubiquitous consumer products
Discussing the definition of pressure sensitivity and characterization of pressure-sensitive behavior, Volume 1 of the "Handbook of Pressure-Sensitive Adhesives and Products" presents the underlying theory behind the main criteria of pressure sensitivity, including Dahlquist criterion, free volume theory, and fibrillation theory, and the pressure-sensitive performance characteristics defined by tack, peel resistance, and shear resistance. It describes the chemical and macromolecular basis of pressure sensitivity as determined by molecular mobility and its parameters and molecular structure and its regulation. The book also addresses the physical and mechanical basis of pressure sensitivity along with the mechanical properties of pressure-sensitive adhesives and products that correlate to their adhesive, converting, and end-use performance characteristics.
While mathematically sophisticated methods can be used to better understand and improve processes, the nonlinear nature of food processing models can make their dynamic optimization a daunting task. With contributions from a virtual who s who in the food processing industry, Optimization in Food Engineering evaluates the potential uses and limitations of optimization techniques for food processing, including classical methods, artificial intelligence-genetic algorithms, multi-objective optimization procedures, and computational fluid dynamics. The book begins by delineating the fundamentals and methods for analytical and numerical procedures. It then covers optimization techniques and how they specifically apply to food processing. The final section digs deep into fundamental food processes and provides detailed explanation and examples from the most experienced and published authors in the field. This includes a range of processes from optimization strategies for improving the performance of batch reactors to the optimization of conventional thermal processing, microwave heating, freeze drying, spray drying, and refrigeration systems, to structural optimization techniques for developing beverage containers, optimization approaches for impingement processing, and optimal operational planning methodologies. Each chapter presents the required parameters for the given process with the optimization procedure to apply. An increasing part of the food processor s job is to optimize systems to squeeze more dollars out of overhead to offset rising utility and transportation costs. Logically combining optimization techniques from many sources into a single volume focused on food production processes, this book provides real solutions to increases in energy, healthcare, and product liability costs that impact the bottom line in food production.
This book covers different aspects of gas injection, from the classic pressure maintenance operation to enhanced oil recovery (EOR), underground gas storage (UGS), and carbon capture and storage (CCS). The authors detail the unique characteristics and specific criteria of each application, including: material balance equations phase behaviour reservoir engineering well design operating aspects surface facilities environmental issues Examples, data, and simulation codes are provided to enable the reader to gain an in-depth understanding of these applications. Fundamentals and Practical Aspects of Gas Injection will be of use to practising engineers in the fields of reservoir engineering, and enhanced oil recovery. It will also be of interest to researchers, academics, and graduate students working in the field of petroleum engineering.
Presenting the end-use and application technologies of pressure-sensitive adhesives and products, Volume Three of the "Handbook of Pressure-Sensitive Adhesives and Products" discusses the build up and classes of pressure-sensitive products, the main representatives of pressure-sensitive products, and their application domains. It divides the main product classes of solvent-based, water-based, and hot-melt-based formulations by their debonding characteristics and water and temperature resistance, and illustrates build-up by adhesive-coated, adhesiveless, carrierless, and linerless pressure-sensitive products. It presents application technology, equipment, and novel products such as RFID, medical, and labels, as well as the self-adhesive competitors of pressure-sensitive products. It also lists professional organizations and suppliers, along with the main literature sources.
Heterogeneous Photocatalysis: Relationships with Heterogeneous Catalysis and Perspectives highlights the differences between thermal-catalysis and photo-catalysis and indicates borderlines, in particular, the possible synergism between them. The book outlines the basic aspect of thermal- and photo-catalysis, along with the most important characterization techniques. In addition, it presents case studies of thermal-catalytic and photo-catalytic or thermal-photo-catalytic reactions and includes a comparison between the results obtained using an inorganic solid as thermal catalyst and photocatalyst for the same reaction, and in the same setup. Final sections offer information on the preparation methods of (photo)catalysts, various techniques used for their characterization, engineering and economical aspects. This book will be a valuable reference source for students and researchers involved in heterogeneous photocatalysis and catalysis, chemistry, chemical engineering, materials science, materials engineering, environment engineering, nanotechnology and green chemistry.
Momentum, heat and mass transport phenomena can be found everywhere in nature. A solid understanding of the principles of these processes is essential for chemical and process engineers. The second edition of Transport Phenomena builds on the foundation of the first edition which presented fundamental knowledge and practical application of momentum, heat and mass transfer processes in a form useful to engineers. This revised edition includes revisions of the original text in addition to new applications providing a thoroughly updated edition. This updated text includes;
This book provides a comprehensive and detailed description of the various mechanisms of the CCS-EOR process. Whereas previous texts have primarily focused on carbon capture and storage (CCS) and enhanced oil recovery (EOR) separately, this book provides a general overview of both technologies when used together. Coupled CCS-EOR technology has become increasingly important, as it overcomes the respective shortcomings of the two technologies. The book presents an integrated numerical model including the hysteresis effect, solubility trapping, miscibility, and formation damage by asphaltene deposition. The experimental and model-based evaluation of fluid properties is also discussed. The book concludes by discussing the latest research into CO2 storage coupled with EOR, most notably performance control by including additives in CO2 injection, and CO2 injection into shale reservoirs. Ideally suited for graduate students and researchers in the fields of carbon capture, utilisation, and storage, the book shares essential insights into maximising the efficiency of CCS and EOR alike.
Modern mineral processing plants are required to be safe and profitable and to minimize their environmental impact. The consequent quest for higher operational standards at reduced cost is leading the industry towards automation technologies as capital-effective means of attaining these objectives. "Advanced Control and Supervision of Mineral Processing Plants" describes the use of dynamic models of major items of mineral processing equipment in the design of control, data reconciliation and soft-sensing schemes; through examples, it illustrates tools integrating simulation and control system design for comminuting circuits and flotation columns. Full coverage is given to the design of soft sensors based on either single-point measurements or more complex measurements like images. The chief issues concerning steady-state and dynamic data reconciliation and their employment in the creation of instrument architecture and fault diagnosis are surveyed. In consideration of the widespread use of distributed control and information management systems in mineral processing, the book describes the current platforms and toolkits available for implementing such advanced systems. Applications of the techniques described in real mineral processing plants are used to highlight their benefits; information for all of the examples, together with supporting MATLAB(r) code can be found at www.springer.com/978-1-84996-105-9. The provision of valuable tools and information on the use of modern software platforms and methods will benefit engineers working in the mineral processing industries, and control engineers and academics interested in the real industrial practicalities of new control ideas. The book will also be of interest to graduate students in chemical, metallurgical and electronic engineering looking for applications of control technology in the treatment of raw materials. |
You may like...
Food Microstructures - Microscopy…
V.J. Morris, Kathy Groves
Hardcover
R4,669
Discovery Miles 46 690
Chemical Engineering: Solutions to the…
J.R. Backhurst, J.H. Harker, …
Paperback
R1,352
Discovery Miles 13 520
Dietary Lipids: Nutritional and…
CrÃspulo Gallegos-Montes, Victoria Ruiz Méndez
Hardcover
R3,923
Discovery Miles 39 230
Metabolomics in Food and Nutrition
Bart Weimer, Carolyn Slupsky
Hardcover
R3,515
Discovery Miles 35 150
Encyclopedia of Information Assurance…
Rebecca Herold, Marcus K. Rogers
Hardcover
R35,746
Discovery Miles 357 460
Statistics For Business And Economics
David Anderson, James Cochran, …
Paperback
(1)
Security and Quality in Cyber-Physical…
Stefan Biffl, Matthias Eckhart, …
Hardcover
R3,698
Discovery Miles 36 980
Atomic Force Microscopy in Process…
Richard Bowen, Nidal Hilal
Hardcover
R3,444
Discovery Miles 34 440
|