![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
Reaction Engineering clearly and concisely covers the concepts and models of reaction engineering and then applies them to real-world reactor design. The book emphasizes that the foundation of reaction engineering requires the use of kinetics and transport knowledge to explain and analyze reactor behaviors. The authors use readily understandable language to cover the subject, leaving readers with a comprehensive guide on how to understand, analyze, and make decisions related to improving chemical reactions and chemical reactor design. Worked examples, and over 20 exercises at the end of each chapter, provide opportunities for readers to practice solving problems related to the content covered in the book.
Nanolayer Research: Methodology and Technology for Green Chemistry introduces the topic of nanolayer research and current methodology, from the basics, to specific applications for green science. Each chapter is written by a specialist in their specific research area, offering a deep coverage of the topic. Nanofilms are explained, along with their rapidly emerging applications in electronic devices for smart grids, units for cells, electrodes for batteries, and sensing systems for environmental purposes in applicable subjects. Readers will find this book useful not only as a textbook for basic knowledge, but also as a reference for practical research.
This book focuses on structural characterisation techniques for porous materials. Covering a range of techniques, including gas sorption, mercury porosimetry, thermoporometry, NMR and imaging methods, this practical guide presents the basic theory behind each characterisation technique, and discusses the practicalities of the experimental and data analysis approaches needed for complex industrial samples. The book shows readers how to approach characterising a particular sort of material for the first time and then how to develop a strategy for more in-depth analysis. It also demonstrates how to determine the best techniques for solving particular problems, and describes methods of obtaining the required information, as well as the limitations of various methods. It particularly highlights a scientific approach involving parameter validation and simple acquisition. Featuring examples taken from case studies of real-world industrial materials, this book is intended for industrial practitioners and researchers. It provides a manual of potential techniques and answers questions concerning porous materials that arise in areas such as the catalyst industry, the oil and gas sector, batteries, fuel cells, tissue engineering scaffolds and drug delivery devices.
Automated Measurement and Monitoring of Bioprocesses: Key Elements of the M3C Strategy, by Bernhard Sonnleitner Automatic Control of Bioprocesses, by Marc Stanke, Bernd Hitzmann An Advanced Monitoring Platform for Rational Design of Recombinant Processes, by G. Striedner, K. Bayer Modelling Approaches for Bio-Manufacturing Operations, by Sunil Chhatre Extreme Scale-Down Approaches for Rapid Chromatography Column Design and Scale-Up During Bioprocess Development, by Sunil Chhatre Applying Mechanistic Models in Bioprocess Development, by Rita Lencastre Fernandes, Vijaya Krishna Bodla, Magnus Carlquist, Anna-Lena Heins, Anna Eliasson Lantz, Gurkan Sin and Krist V. Gernaey Multivariate Data Analysis for Advancing the Interpretation of Bioprocess Measurement and Monitoring Data, by Jarka Glassey Design of Pathway-Level Bioprocess Monitoring and Control Strategies Supported by Metabolic Networks, by Ines A. Isidro, Ana R. Ferreira, Joao J. Clemente, Antonio E. Cunha, Joao M. L. Dias, Rui Oliveira Knowledge Management and Process Monitoring of Pharmaceutical Processes in the Quality by Design Paradigm, by Anurag S Rathore, Anshuman Bansal, Jaspinder Hans The Choice of Suitable Online Analytical Techniques and Data Processing for Monitoring of Bioprocesses, by Ian Marison, Siobhan Hennessy, Roisin Foley, Moira Schuler, Senthilkumar Sivaprakasam, Brian Freeland
Dynamic simulation of bioreactors is a challenge for both the industrial and academic worlds. Beyond the large number of physical and biological phenomena to be considered and the wide range of scales involved, the central difficulty lies in the need to account for the dynamic behavior of suspended microorganisms. In the case of chemical reactors, knowledge of the thermodynamic equilibrium laws at the interfaces makes it possible to produce macroscopic models by integrating local laws. Microorganisms, on the other hand, have the ability to modulate the rate of substrate assimilation. Moreover, the nature of the biochemical transformations results from a compromise between the needs of the cell and the available resources. This book revisits the modeling of bioreactors using a multi-scale approach. It addresses issues related to mixing, phase-to-phase transfers and the adaptation of microorganisms to variations in concentration, and explores the use of population balances for the simulation of bioreactors. By adopting a multidisciplinary perspective that draws on process engineering, fluid mechanics and microbiology, this book sheds new light on the particularity of bioprocesses in relation to physical and chemical phenomena.
We are honoured to present this collection of selected papers from the International Conference on Mixing and Crystallization, held at the Tioman Island, Malaysia in April, 1998. We are grateful to the editorial board comprising five eminent researchers in the field of mixing and crystallization for their thoughtful review and suggestions. In order to make this book as current as possible some of the papers have been thoroughly revised, which caused some delay in bringing out this edited version. We received necessary support from the Institute of Post Graduate Studies and Research, the University of Malaya and the Special Research Centre for Multiphase Processes, and the University of Newcastle, Australia in organizing this conference. We are indebted to the Institute of Chemical Engineers, United Kingdom, and the Institution of Engineers, Malaysia for their sponsorship. We would like to thank K.C. Lim, Dr. C. Ramakanth and Ms. Zubaidah for their help at the various stages of editing. We would also like to express our gratitude to Professor Mohd. Ali Hashim and Dr. Nafis Ahmed for their help and encouragement. Finally, I would like to thank Kluwer Academic Publishers for publishing this book. Bhaskar Sen Gupta Shaliza Ibrahim University of Malaya, Kuala Lumpur xi CFD MODELLING OF HYDRODYNAMIC CONDITIONS WITHIN THE WAKE OF MIXING IMPELLER BLADES 1 G.D. RIGByl., G. LANE . AND G.M. EVANSl.
Hydrostatic Testing, Corrosion, and Microbiologically Influenced Corrosion: A Field Manual for Control and Prevention teaches industry professionals, managers, and researchers how to combat corrosion failure associated with hydrotesting. It discusses how a test liquid must be selected, how corrosion by bacteria should be controlled, and how to eliminate the risk of leakage. Rather than teaching how hydrotests should be conducted, it helps the reader evaluate the quality of a hydrotest that's already been conducted in terms of oxygen scavenger use, biocide testing, inhibitor addition, and water quality and explains the tasks that top and middle management must ensure are taken with respect to corrosion assessment of hydrotesting. The manual also discusses microbiologically influenced corrosion (MIC) as the main corrosion mechanism related to post-hydrotesting and offers essential knowledge on combating this corrosion process. In addition to being a manual for top and middle management on how to deal with corrosion, this book also:
This indispensable book describes lubricant additives, their synthesis, chemistry, and mode of action. All important areas of application are covered, detailing which lubricants are needed for a particular application. Laboratory and field performance data for each application is provided and the design of cost-effective, environmentally friendly technologies is fully explored. This edition includes new chapters on chlorohydrocarbons, foaming chemistry and physics, antifoams for nonaqueous lubricants, hydrogenated styrene-diene viscosity modifiers, alkylated aromatics, and the impact of REACh and GHS on the lubricant industry.
PEM Fuel Cell Failure Mode Analysis presents a systematic analysis of PEM fuel cell durability and failure modes. It provides readers with a fundamental understanding of insufficient fuel cell durability, identification of failure modes and failure mechanisms of PEM fuel cells, fuel cell component degradation testing, and mitigation strategies against degradation. The first several chapters of the book examine the degradation of various fuel cell components, including degradation mechanisms, the effects of operating conditions, mitigation strategies, and testing protocols. The book then discusses the effects of different contamination sources on the degradation of fuel cell components and explores the relationship between external environment and the degradation of fuel cell components and systems. It also reviews the correlation between operational mode, such as start-up and shut-down, and the degradation of fuel cell components and systems. The last chapter explains how the design of fuel cell hardware relates to failure modes. Written by international scientists active in PEM fuel cell research, this volume is enriched with practical information on various failure modes analysis for diagnosing cell performance and identifying failure modes of degradation. This in turn helps in the development of mitigation strategies and the increasing commercialization of PEM fuel cells.
The announcement that we had decoded the human genome in 2000 ushered in a new and unique era in biomedical research and clinical medicine. This Third Edition of Principles of Gender-Specific Medicine focuses, as in the past two editions, on the essentials of sexual dimorphism in human physiology and pathophysiology, but emphasizes the latest information about molecular biology and genomic science in a variety of disciplines. Thus, this edition is a departure from the previous two; the editor solicited individual manuscripts from innovative scientists in a variety of fields rather than the traditional arrangement of sections devoted to the various subspecialties of medicine edited by section chiefs. Wherever it was available, these authors incorporated the latest information about the impact of the genome and the elements that modify its expression on human physiology and illness. All chapters progress translationally from basic science to the clinical applications of gender-specific therapy and suggest the most important topics for future investigation. This book is essential reading for all biomedical investigators and medical educators involved in gender-specific medicine. It will also be useful for primary care practitioners who need information about the importance of sex and gender in the prevention, diagnosis and treatment of illness. Winner of the 2018 PROSE Award in Clinical Medicine from the Association of American Publishers!
Environmental Inorganic Chemistry for Engineers explains the principles of inorganic contaminant behavior, also applying these principles to explore available remediation technologies, and providing the design, operation, and advantages or disadvantages of the various remediation technologies. Written for environmental engineers and researchers, this reference provides the tools and methods that are imperative to protect and improve the environment. The book's three-part treatment starts with a clear and rigorous exposition of metals, including topics such as preparations, structures and bonding, reactions and properties, and complex formation and sequestering. This coverage is followed by a self-contained section concerning complex formation, sequestering, and organometallics, including hydrides and carbonyls. Part Two, Non-Metals, provides an overview of chemical periodicity and the fundamentals of their structure and properties.
Microinjection (G. Sczakiel et al.). How to Make Glass Microtools for the Injection of Isolated Plant Sperm Cells into Embryo Sac Cells Using a Microforge (C.J. Keijzer). Application of Confocal Microscopy for the Study of Neuronal Organization in Human Cortical Areas after Microinjection of Lucifer Yellow (P.V. Belichenko et al.). Flourescent Probes (R.W. Horobin, F. RashidDoubell). Flourescent Phospholipids in Membrane and Lipoprotein Research (A. Hermetter et al.). Selection of Flourescent Golgi Complex Probes Using StructureActivity Relationship Models (F. RashidDoubell, R.W. Horobin). WholeCell PatchClamping (B. Van Duijn et al.). Flourescent Analysis of Replication and Intermediates of Chromatin Folding in Nuclei of Mammalian Cells (G. Banfalvi). Autoflourescence in Potato Tuber Phellem (T. Hendriks et al.). Quantitative Localization of HIV Proteins in Mammalian Cells (L.E.A. Amet et al.). Concepts of the Cytometric Approach (S.C. Brown). 14 additional articles. Index.
This important new book covers recent advancements, innovations, and technologies in industrial biotechnology, specifically addressing the application of various biomolecules in industrial production and in cleaning and environmental remediation sectors. The goal of industrial biotechnology is to develop new techniques and technologies to transform renewable raw materials into chemicals, materials, and fuels by the substitution of fossil fuels. With the increase in the world's population and the resultant growing energy demand, the need for more energy can be successfully met with the advancements in industrial biotechnology. Currently across the globe significant research has been undertaken in the production of cleaner fuels, materials, and semi-synthetic chemicals, with environmental benefits. Developing countries have huge agricultural resources that could be utilized for production of value-added byproducts for the sustainable development of bio-based economy. The book opens with the chapter on the production of exopolysaccharides from halophilic microorganisms, a polymer that is normally very useful in various production sectors of the food, pharmaceutical, and petroleum industries. The book goes on to cover: The production of antimicrobial compounds from alkaliphilic bacteria Thermophilic actinomycetes Food, agro, and pharmaceutical potential and biotechnological applications of biosurfactants, halophiles, cyclodextrin glycosyl transferease, fungal chitinase, proteases, yeasts and yeast products Also covered in the book are the environmental aspects of industrial biotechnology such as the genetic enhancement for biofuel production, the production of biodegradable thermoplastics, advancements in the synthesis of bio-oil, ecofriendly treatment of agro-based lignocelluloses, and anaerobic bio reactors for hydrocarbon remediation. The international roster of chapter authors have been chosen for their renowned expertise and contribution to the various fields of industrial biotechnology. This book is suitable to chemists, biotechnologists from research institutes, academia, and students as well as for industry professionals
Due to an increase in the wide-range of chemicals in petrochemical processing industries, as well as frequency of use, there has been a steady rise in flammability problems and other hazards. Hazardous Area Classification in Petroleum and Chemical Plants: A Guide to Mitigating Risk outlines the necessities of explosion protection in oil, gas and chemical industries, and discusses fire and occupancy hazards, extinguishing methods, hazard identification, and classification of materials. This book addresses these issues and concerns and presents a simple hazard identification system to help offset future problems. It offers information on the hazards of various materials and their level of severity as it relates to fire prevention, exposure, and control. The system provides an alerting signal and on-the-spot information to help protect lives in an industrial plant or storage location during fire emergencies. Understanding the hazard helps to ensure that the process equipment is properly selected, installed, and operated to provide a safe operating system. This text also includes a summary of the rules, methods, and requirements for fighting a fire, introduces various hazard identification systems. * Includes a summary of the rules, methods, and requirements needed to extinguish a fire * Introduces various hazard identification systems * Includes concepts for layout and spacing of equipment in process plants The book serves as resource for plant design engineers as well as plant protection and safety personnel in planning for effective firefighting operations.
This book presents specific key natural and artificial systems that are promising biocatalysts in the areas of health, agriculture, environment and energy. It provides a comprehensive account of the state of the art of these systems and outlines the significant progress made in the last decade using these systems to develop innovative, sustainable and environmentally friendly solutions. Chapters from expert contributors explore how natural enzymes and artificial systems tackle specific targets such as: climate change, carbon footprint and economy and carbon dioxide utilisation; nitrogen footprint and fixation and nitrous oxide mitigation; hydrogen production, fuel cells and energy from bacteria; biomass transformation and production of added-value compounds, as well as biosensors development. This book provides an important and inspiring account for the designing of new natural and artificial systems with enhanced properties, and it appeals not only to students and researchers working in the fields of energy, health, food and environment, but also to a wider audience of educated readers that are interested in these up-to-date and exciting subjects.Chapter "Carbon Dioxide Utilisation-The Formate Route" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
In the past decades, the scan rate range of calorimeters has been extended tremendously at the high end, from approximately 10 up to 10 000 000 DegreesC/s and more. The combination of various calorimeters and the newly-developed Fast Scanning Calorimeters (FSC) now span 11 orders of magnitude, by which many processes can be mimicked according to the time scale(s) of chemical and physical transitions occurring during cooling, heating and isothermal stays in case heat is exchanged. This not only opens new areas of research on polymers, metals, pharmaceuticals and all kinds of substances with respect to glass transition, crystallization and melting phenomena, it also enables in-depth study of metastability and reorganization of samples on an 1 to 1000 ng scale. In addition, FSC will become a crucial tool for understanding and optimization of processing methods at high speeds like injection molding. The book resembles the state-of-the art in Thermal Analysis & Calorimetry and is an excellent starting point for both experts and newcomers in the field.
This textbook presents a general multi-objective optimization framework for optimizing chemical processes by implementing a link between process simulators and metaheuristic techniques. The proposed approach is general and shows how to implement links between different process simulators such as Aspen Plus (R), HYSIS (R), Super Pro Designer (R) linked to a variety of metaheuristic techniques implemented in Matlab (R), Excel (R), C++, and others, eliminating the numerical complications through the optimization process. Furthermore, the proposed framework allows the use of thermodynamic, design and constitutive equations implemented in the process simulator to implement any process. Aimed at graduate and undergraduate students, it presents introductory chapters for process simulators and metaheuristic optimization techniques and provides several worked exercises as well as proposed exercises. In addition, accompanying tutorial videos clearly explaining the implemented methodologies are available online. Also, some Matlab (R) routines are included as electronic supporting material.
Provides a through and systematic discussion on the functionally graded adhesive and its joints Discusses analytical modelling and numerical analyses of the joints Details 3D stress and failure delamination analysis for composite analyses of functionally graded out-of-plane joints under various combinations of loading Illustrates FE Modeling and simulation of interfacial failure and damage propagation in out-of-plane joints Includes effect of various gradation function profiles on damage growth driving forces (SERR)
The field of encapsulation, especially microencapsulation, is a rapidly growing area of research and product development. Applications of Encapsulation and Controlled Release offers a broad perspective on a variety of applications and processes, including, up-to-date research, figures, tables, illustrations, and references. Written at a level comprehensible to non-experts, it is a rich source of technical information and current practices in research and industry.
This book surveys reliability, availability, maintainability and safety (RAMS) analyses of various engineering systems. It highlights their role throughout the lifecycle of engineering systems and explains how RAMS activities contribute to their efficient and economic design and operation. The book discusses a variety of examples and applications of RAMS analysis, including: * software products; * electrical and electronic engineering systems; * mechanical engineering systems; * nuclear power plants; * chemical and process plants and * railway systems. The wide-ranging nature of the applications discussed highlights the multidisciplinary nature of complex engineering systems. The book provides a quick reference to the latest advances and terminology in various engineering fields, assisting students and researchers in the areas of reliability, availability, maintainability, and safety engineering.
Chemical reaction engineering is at the core of chemical engineering education. Unfortunately, the subject can be intimidating to students, because it requires a heavy dose of mathematics. These mathematics, unless suitably explained in the context of the physical phenomenon, can confuse rather than enlighten students. Bearing this in mind, Reaction Engineering Principles is written primarily from a student's perspective. It is the culmination of the author's more than twenty years of experience teaching chemical reaction engineering. The textbook begins by covering the basic building blocks of the subject-stoichiometry, kinetics, and thermodynamics-ensuring students gain a good grasp of the essential concepts before venturing into the world of reactors. The design and performance evaluation of reactors are conveniently grouped into chapters based on an increasing degree of difficulty. Accordingly, isothermal reactors-batch and ideal flow types-are addressed first, followed by non-isothermal reactor operation, non-ideal flow in reactors, and some special reactor types. For better comprehension, detailed derivations are provided for all important mathematical equations. Narrative of the physical context in which the formulae work adds to the clarity of thought. The use of mathematical formulae is elaborated upon in the form of problem solving steps followed by worked examples. Effects of parameters, changing trends, and comparisons between different situations are presented graphically. Self-practice exercises are included at the end of each chapter.
This book presents a large number of organic reactions performed under green conditions, which were earlier performed using anhydrous conditions and various volatile organic solvents. The conditions used involve green solvents like water, super critical carbon dioxide, ionic liquids, polymer-supported reagents, polyethylene glycol and perfluorous liquids. A number of reactions have been conducted in solid state without using any solvent. Most of the reactions have been conducted under microwave irradiations and sonication. In large number of reactions, catalysts like phase transfer catalysts, crown ethers and biocatalysts have been used. Providing the protocols that every laboratory should adopt, this book elaborates the principles of green chemistry and discusses the planning and preparations required to convert to green laboratory techniques. It includes applications relevant to practicing researchers, students and environmental chemists. This book is useful for students (graduate and postgraduate), researchers and industry professionals in the area of chemical engineering, chemistry and allied fields.
Industrial Catalysis: Chemistry and Mechanism is an essential textbook for upper-level undergraduate and graduate students with an interest in the underlying concepts of catalysis, industrial organic chemistry and the mechanism of catalysis. For undergraduates it provides an introduction to the basic catalytic principles and industrial processes. Graduate students will find that the book gives an in-depth understanding of the mechanism of catalytic surface intermediates and the practice of modern catalysis research. For the post graduate and industrial chemist involved in catalysis research, it is a valuable reference text as a compendium of mechanisms by which major industrial catalytic processes operate.This unique book fills the gap between basic organic chemistry and fundamental chemical principles of catalysis, and is a must read for students and researchers in the field.
Industrial Catalysis: Chemistry and Mechanism is an essential textbook for upper-level undergraduate and graduate students with an interest in the underlying concepts of catalysis, industrial organic chemistry and the mechanism of catalysis. For undergraduates it provides an introduction to the basic catalytic principles and industrial processes. Graduate students will find that the book gives an in-depth understanding of the mechanism of catalytic surface intermediates and the practice of modern catalysis research. For the post graduate and industrial chemist involved in catalysis research, it is a valuable reference text as a compendium of mechanisms by which major industrial catalytic processes operate.This unique book fills the gap between basic organic chemistry and fundamental chemical principles of catalysis, and is a must read for students and researchers in the field.
Pressure Swing Adsorption is the first book that provides a
coherent and concise summary of the underlying science and
technology of pressure swing adsorption (PSA) processes at a level
understandable to the practising engineer. |
You may like...
Lossless Information Hiding in Images
Zheming Lu, Shize Guo
Paperback
Bloch-type Periodic Functions: Theory…
Yong-kui Chang, Gaston Mandata N'G'Uerekata, …
Hardcover
R1,907
Discovery Miles 19 070
Modern Trends in Pseudo-Differential…
Joachim Toft, M.W. Wong, …
Hardcover
R2,715
Discovery Miles 27 150
|