![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
This volume provides an overview of recent developments and scope in the use of flow chemistry in relevance to heterocyclic synthesis. The heterocyclic ring is the most prominent structural motif in the vast majority of natural products as well as pharmaceutical compounds since this facilitates tuneable interactions with the biological target besides conferring a degree of structural and metabolic stability. In recent times, flow chemistry has heralded a paradigm shift in organic synthesis as it offers several unique advantages over conventional methods like drastic acceleration of sluggish transformations, enhanced yields, cleaner reactions etc and is gradually gaining a lot of attention among organic chemist worldwide. Given the importance of heterocycles in natural products, medicinal chemistry and pharmaceuticals, this is a well warranted volume and complements the previous volume of Topics in Organometallic Chemistry 'Organometallic Flow Chemistry'. This volume offers a versatile overview of the topic, besides discussing the recent progress in the flourishing area of flow chemistry in relevance to heterocyclic chemistry; it will also help researchers to better understand the chemistry behind these reactions. This in turn provides a platform for future innovations towards the designing of novel transformations under continuous flow. Thus, this volume will appeal to both the novices in this field as well as to experts in academia and industry.
First published in 1995, Surface Analysis of Paper examines surface analysis techniques from a paper industry perspective and places heavy emphasis on applications. Modern techniques, including ion mass spectrometry, infrared spectroscopy, and optical profilometry are reviewed in a straightforward manner. This new book provides details on widely used methods and instruments, and discusses how they can be used to attain, for example, contour maps of the microscopic constituents on paper surfaces and accurate analyses of the physical properties of paper. Organized into three sections, Surface Analysis of Paper provides thorough coverage of the physical characteristics of paper, and a clear picture of new and emerging analytical methods. Carefully chosen background material on fundamental concepts is included wherever such material assists in understanding the uses of analysis methods. Each chapter contains: An introduction A description of the technique A discussion of the type of information that can be obtained with the particular technique Practical examples to demonstrate the advantages of the technique
This book highlights current efforts and research in Malaysia on conversion of bio-resources to renewable energy of biofuel as an alternative way of producing energy from fossil-based fuels. The book starts with the renewable energy developments and policies in Malaysia and discusses the main renewable resources available. It addresses the use of more environmentally friendly technologies which can lead to the reduction of pollution and thus sustaining the ecology for treatment of bio-resources. The book also presents new initiatives in bioenergy production with theories, applications, and challenges of biological processes of biofuel production such as bioethanol, biobutanol, biogas, microbial fuel cell (MFC), and biodiesel. It discusses the potential of renewable energy resources to meet the energy needs without damaging/affecting the environment.
This book focuses on the emerging additive manufacturing technology and its applications beyond state-of-the-art, fibre-reinforced thermoplastics. It also discusses the development of a hybrid, integrated process that combines additive and subtractive operations in a single-step platform, allowing CAD-to-Part production with freeform shapes using long or continuous fibre-reinforced thermoplastics. The book covers the entire value chain of this next-generation technology, from part design and materials composition to transformation stages, product evaluation, and end-of-life studies. Moreover, it addresses the following engineering issues: * Design rules for hybrid additive manufacturing; * Thermoplastic compounds for high-temperature and -strength applications; * Advanced extrusion heads and process concepts; * Hybridisation strategies; * Software ecosystems for hAM design, pre-processing, process planning, emulating and multi-axis processing; * 3D path generators for hAM based on a multi-objective optimisation algorithm that matches the recent curved adaptive slicing method with a new transversal scheme; * hAM parameters, real-time monitoring and closed-loop control; * Multiparametric nondestructive testing (NDT) tools customised for FRTP AM parts; * Sustainable manufacturing processes validated by advanced LCA/LCC models.
This book presents new application processes in the context of anaerobic digestion (AD), such as phosphorus recovery, microbial fuel cells (MFCs), and seaweed digestion. In addition, it introduces a new technique for the modeling and optimization of AD processes. Chapters 1 and 2 review AD as a technique for converting a range of organic wastes into biogas, while Chapter 3 discusses the recovery of phosphorus from anaerobically digested liquor. Chapters 4 and 5 focus on new techniques for modeling and optimizing AD. Chapters 6 and 7 then describe the state of the art in AD effluent treatment. The book's final three chapters focus on more recent developments, including microbial fuel cells (MFCs) (Chapter 8), seaweed production (Chapter 9), and enzyme technologies (Chapter 10).
This book explores the remarkable information correspondences and probability structures of proteins. Correspondences are pervasive in biochemistry and bioinformatics: proteins share homologies, folding patterns, and mechanisms. Probability structures are just as paramount: folded state graphics reflect Angstrom-scale maps of electron density. The author explores protein sequences (primary structures), both individually and in sets (systems) with the help of probability and information tools. This perspective will enhance the reader's knowledge of how an important class of molecules is designed and put to task in natural systems, and how we can approach class members in hands-on ways.
This book highlights the latest research on waste processing technologies, particularly for domestic, agricultural, and petroleum based pollutants, intended to achieve waste valorisation. In addition, it discusses the important role of plastic recycling, as well as advanced waste processing techniques.
Concepts, procedures and programs described in this book make it possible for readers to solve both simple and complex equilibria problems quickly and easily and to visualize results in both numerical and graphical forms. They allow the user to calculate concentrations of reactants and products for both simple and complicated situations. The user can spend less time doing calculations and more time thinking about what the results mean in terms of a larger problem in which she or he may be interested.
This title covers the fundamentals of carbon nanomaterials in a logical and clear manner to make concepts accessible to researchers from different disciplines. It summarizes in a comprehensive manner recent technological and scientific accomplishments in the area of carbon nanomaterials and their application in lithium ion batteries The book also addresses all the components anodes, cathodes and electrolytes of lithium ion battery and discusses the technology of lithium ion batteries that can safely operate at high temperature.
This book systematically explains the application principles and green processing technologies of industrial oil plant. Firstly, the industrial plant oil resources are elaborated as an independent discipline for systematic research. Secondly, it has laid a solid theoretical foundation for the utilization of industrial plant oil resources, and will greatly promote the development of industrialization and modernization of industrial plant oil resources worldwide. Thirdly, it constructs integrated technology system of oil plant cultivation, oil extraction technology and products application. Finally, it elaborates a series of environmental issues including the protection of biodiversity and the balance of the forest ecology during the industrial plant oil resources processing. The technological process for green conversion of industrial plant oil resources to the oil-based materials and high value products will be of particular interest to the readers among oil researchers, producers and managers.
Advances in Sugarcane Biorefinery: Technologies, Commercialization, Policy Issues and Paradigm Shift for Bioethanol and By-Products, by Chandel and Silveira, compiles the basic and applied information covering cane and biomass processing for sugar and ethanol production, as well as by-products utilization for improving the economy of sugarcane biorefineries. In this unique collection of 14 chapters, specialists in their field provide critical insights into several topics, review the current research, and discuss future progress in this research area. The book presents the most current advances in sugarcane biorefinery, including sugarcane crop cultivation, new sugarcane varieties, soil health, mechanization of crop, technical aspects of first and second generation ethanol production, economic analysis, life cycle assessment, biomass logistics and storage, co-generation of heat and electricity, process intensification and alternative by-products utilization. The book also explores the business ecosystem of sugarcane biorefineries, marketing analysis of ethanol demand and price dwindling patterns, aiming for a futuristic scenario. This book will be especially useful for scientists, researchers and technicians who are working in the area of biomass based biorefineries, as well as professionals in the sugar and alcohol industry. It also brings relevant content for policy makers, market analysts, agriculture scientists and managers.
An affordable, easily accessible desk reference on biomanufacturing, focused on downstream recovery and purification Advances in the fundamental knowledge surrounding biotechnology, novel materials, and advanced engineering approaches continue to be translated into bioprocesses that bring new products to market at a significantly faster pace than most other industries. Industrial scale biotechnology and new manufacturing methods are revolutionizing medicine, environmental monitoring and remediation, consumer products, food production, agriculture, and forestry, and continue to be a major area of research. The downstream stage in industrial biotechnology refers to recovery, isolation, and purification of the microbial products from cell debris, processing medium and contaminating biomolecules from the upstream process into a finished product such as biopharmaceuticals and vaccines. Downstream process design has the greatest impact on overall biomanufacturing cost because not only does the biochemistry of different products ( e.g., peptides, proteins, hormones, antibiotics, and complex antigens) dictate different methods for the isolation and purification of these products, but contaminating byproducts can also reduce overall process yield, and may have serious consequences on clinical safety and efficacy. Therefore downstream separation scientists and engineers are continually seeking to eliminate, or combine, unit operations to minimize the number of process steps in order to maximize product recovery at a specified concentration and purity. Based on Wiley's" Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, " this volume features fifty articles that provide information on down- stream recovery of cells and protein capture; process development and facility design; equipment; PAT in downstream processes; downstream cGMP operations; and regulatory compliance. It covers: Cell wall disruption and lysisCell recovery by centrifugation and filtrationLarge-scale protein chromatographyScale down of biopharmaceutical purification operationsLipopolysaccharide removalPorous media in biotechnologyEquipment used in industrial protein purificationAffinity chromatographyAntibody purification, monoclonal and polyclonalProtein aggregation, precipitation and crystallizationFreeze-drying of biopharmaceuticalsBiopharmaceutical facility design and validationPharmaceutical bioburden testingRegulatory requirements Ideal for graduate and advanced undergraduate courses on biomanufacturing, biochemical engineering, biophar- maceutical facility design, biochemistry, industrial microbiology, gene expression technology, and cell culture technology, "Downstream Industrial Biotechnology" is also a highly recommended resource for industry professionals and libraries.
Particles and Interfaces: Interaction, Deposition, Structure, Volume 20, Second Edition unifies particle and protein adsorption phenomena by presenting recent developments in this growing field of nanoscience. While experimental data is available in vast quantities, there is a deficit in quality interpretation of that data. This title provides such information, emphasizing the basic physics behind practical problems, thus empowering the reader to estimate relevant effects. The book includes solved problems of particle transport under non-linear conditions and their relevance to predicting protein adsorption, including an entirely new chapter devoted to polyelectrolyte and protein adsorption at solid/liquid and solid/gas interfaces.
Graphene and Related Nanomaterials: Properties and Applications outlines the physics and the applications of graphene-related materials, including graphene, graphene oxide and carbon nanotubes. The first chapter introduces the physics of graphene and related nanomaterials. The following sections deal with different applications spanning from gas sensors to non-volatile memories and supercapacitors. The book also covers spintronics for graphene. In each chapter, specific applications are explained in a detailed way. This book will appeal to materials scientists and engineers looking to understand more about the nature of graphene and how it is currently being used.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science.The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.Review articles for the individual volumes are invited by the volume editors.Readership: research chemists at universities or in industry, graduate students
Dynamic simulation of bioreactors is a challenge for both the industrial and academic worlds. Beyond the large number of physical and biological phenomena to be considered and the wide range of scales involved, the central difficulty lies in the need to account for the dynamic behavior of suspended microorganisms. In the case of chemical reactors, knowledge of the thermodynamic equilibrium laws at the interfaces makes it possible to produce macroscopic models by integrating local laws. Microorganisms, on the other hand, have the ability to modulate the rate of substrate assimilation. Moreover, the nature of the biochemical transformations results from a compromise between the needs of the cell and the available resources. This book revisits the modeling of bioreactors using a multi-scale approach. It addresses issues related to mixing, phase-to-phase transfers and the adaptation of microorganisms to variations in concentration, and explores the use of population balances for the simulation of bioreactors. By adopting a multidisciplinary perspective that draws on process engineering, fluid mechanics and microbiology, this book sheds new light on the particularity of bioprocesses in relation to physical and chemical phenomena.
Silver holds three world records; it has the lowest contact resistance, highest electrical conductivity and the best thermal conductivity of all metals. The element's physical strength, brilliance and malleability leads to its many uses from electronics to optical applications.A new 'silver rush' has occurred following the recent discovery that silver, when divided to form particles at the nano scale, can take on new properties. Meanwhile, there has been an increase in regulations against environmental pollution of silver ions toxicity, which have caused numerous diseases and disorders in the marine, microbial, invertebrate and vertebrate community (including humans). Both of which have led to a great interest in silver recovery for both environmental toxicity and an economic point of view.Comprised of ten chapters, this book draws attention to the most advance technologies in silver recovery and recycling from various spent sources, which will appeal to research scientists and metallurgists. The state of the art in recovery of silver from different sources by hydrometallurgical and bio-metallurgical processing and varieties of leaching, cementing, reducing agents, adsorbents, and bio-sorbents are highlighted in this book.
Green Chemistry: An Inclusive Approach provides a broad overview of green chemistry for researchers from either an environmental science or chemistry background, starting at a more elementary level, incorporating more advanced concepts, and including more chemistry as the book progresses. Every chapter includes recent, state-of-the-art references, in particular, review articles, to introduce researchers to this field of interest and provide them with information that can be easily built upon. By bringing together experts in multiple subdisciplines of green chemistry, the editors have curated a single central resource for an introduction to the discipline as a whole. Topics include a broad array of research fields, including the chemistry of Earth's atmosphere, water and soil, the synthesis of fine chemicals, and sections on pharmaceuticals, plastics, energy related issues (energy storage, fuel cells, solar, and wind energy conversion etc., greenhouse gases and their handling, chemical toxicology issues of everyday products (from perfumes to detergents or clothing), and environmental policy issues.
The Alkaloids, Volume 78 is the latest update in a series that has not only covered the topic for more than 60 years, but is also touted as the leading book series in the field of alkaloid chemistry. Topics of note in this updated volume include The Acridone Alkaloids, The Galbulimima-Alkaloids, the Total Synthesis of Lundurine and Related Alkaloids: Recent Applications, The Moschamine-Related Indole Alkaloids, and Alkaloids of the Lauraceae. In more than 75 volumes, all aspects of alkaloids, including chemistry, biology and pharmacology are covered in high-quality, timeless reviews written by renowned experts in the field.
Torrefaction of Biomass for Energy Applications: From Fundamentals to Industrial Scale explores the processes, technology, end-use, and economics involved in torrefaction at the industrial scale for heat and power generation. Its authors combine their industry experience with their academic expertise to provide a thorough overview of the topic. Starting at feedstock pretreatment, followed by torrefaction processes, the book includes plant design and operation, safety aspects, and case studies focusing on the needs and challenges of the industrial scale. Commercially available technologies are examined and compared, and their economical evaluation and life cycle assessment are covered as well. Attention is also given to non-woody feedstock, alternative applications, derived fuels, recent advances, and expected future developments. For its practical approach, this book is ideal for professionals in the biomass industry, including those in heat and power generation. It is also a useful reference for researchers and graduate students in the area of biomass and biofuels, and for decision makers, policy makers, and analysts in the energy field.
Essentials of Radiation Heat Transfer focuses only on the essential topics required to gain an understanding of radiation heat transfer to enable the reader to master more challenging problems. The strength of the book lies in its elaborate presentation of the powerful radiosity-irradiation method and shows how this technique can be used to solve a variety of problems of radiation in enclosures made of one to any number of surfaces in both transparent and participating media. The book also introduces atmospheric radiation in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, by a better understanding of radiation. The author has included pedagogical features such as end-of-chapter exercises and worked examples with varying degrees of difficulty to augment learning and self-testing. The book has been written in an easy- to- follow conversational style to enhance reader engagement and learning outcomes. This book will be a useful guide for upper undergraduate and graduate students in the areas of mechanical engineering, aerospace engineering, atmospheric sciences, and energy sciences.
Nanolayer Research: Methodology and Technology for Green Chemistry introduces the topic of nanolayer research and current methodology, from the basics, to specific applications for green science. Each chapter is written by a specialist in their specific research area, offering a deep coverage of the topic. Nanofilms are explained, along with their rapidly emerging applications in electronic devices for smart grids, units for cells, electrodes for batteries, and sensing systems for environmental purposes in applicable subjects. Readers will find this book useful not only as a textbook for basic knowledge, but also as a reference for practical research.
This book focuses on structural characterisation techniques for porous materials. Covering a range of techniques, including gas sorption, mercury porosimetry, thermoporometry, NMR and imaging methods, this practical guide presents the basic theory behind each characterisation technique, and discusses the practicalities of the experimental and data analysis approaches needed for complex industrial samples. The book shows readers how to approach characterising a particular sort of material for the first time and then how to develop a strategy for more in-depth analysis. It also demonstrates how to determine the best techniques for solving particular problems, and describes methods of obtaining the required information, as well as the limitations of various methods. It particularly highlights a scientific approach involving parameter validation and simple acquisition. Featuring examples taken from case studies of real-world industrial materials, this book is intended for industrial practitioners and researchers. It provides a manual of potential techniques and answers questions concerning porous materials that arise in areas such as the catalyst industry, the oil and gas sector, batteries, fuel cells, tissue engineering scaffolds and drug delivery devices.
Handbook of Advanced Chromatography /Mass Spectrometry Techniques is a compendium of new and advanced analytical techniques that have been developed in recent years for analysis of all types of molecules in a variety of complex matrices, from foods to fuel to pharmaceuticals and more. Focusing on areas that are becoming widely used or growing rapidly, this is a comprehensive volume that describes both theoretical and practical aspects of advanced methods for analysis. Written by authors who have published the foundational works in the field, the chapters have an emphasis on lipids, but reach a broader audience by including advanced analytical techniques applied to a variety of fields. Handbook of Advanced Chromatography / Mass Spectrometry Techniques is the ideal reference for those just entering the analytical fields covered, but also for those experienced analysts who want a combination of an overview of the techniques plus specific and pragmatic details not often covered in journal reports. The authors provide, in one source, a synthesis of knowledge that is scattered across a multitude of literature articles. The combination of pragmatic hints and tips with theoretical concepts and demonstrated applications provides both breadth and depth to produce a valuable and enduring reference manual. It is well suited for advanced analytical instrumentation students as well as for analysts seeking additional knowledge or a deeper understanding of familiar techniques.
Automated Measurement and Monitoring of Bioprocesses: Key Elements of the M3C Strategy, by Bernhard Sonnleitner Automatic Control of Bioprocesses, by Marc Stanke, Bernd Hitzmann An Advanced Monitoring Platform for Rational Design of Recombinant Processes, by G. Striedner, K. Bayer Modelling Approaches for Bio-Manufacturing Operations, by Sunil Chhatre Extreme Scale-Down Approaches for Rapid Chromatography Column Design and Scale-Up During Bioprocess Development, by Sunil Chhatre Applying Mechanistic Models in Bioprocess Development, by Rita Lencastre Fernandes, Vijaya Krishna Bodla, Magnus Carlquist, Anna-Lena Heins, Anna Eliasson Lantz, Gurkan Sin and Krist V. Gernaey Multivariate Data Analysis for Advancing the Interpretation of Bioprocess Measurement and Monitoring Data, by Jarka Glassey Design of Pathway-Level Bioprocess Monitoring and Control Strategies Supported by Metabolic Networks, by Ines A. Isidro, Ana R. Ferreira, Joao J. Clemente, Antonio E. Cunha, Joao M. L. Dias, Rui Oliveira Knowledge Management and Process Monitoring of Pharmaceutical Processes in the Quality by Design Paradigm, by Anurag S Rathore, Anshuman Bansal, Jaspinder Hans The Choice of Suitable Online Analytical Techniques and Data Processing for Monitoring of Bioprocesses, by Ian Marison, Siobhan Hennessy, Roisin Foley, Moira Schuler, Senthilkumar Sivaprakasam, Brian Freeland |
You may like...
Computational Contact Mechanics
Peter Wriggers, Tod A. Laursen
Hardcover
R2,828
Discovery Miles 28 280
Community Education and Crime Prevention…
Carolyn M. S. Ward
Hardcover
Blockchain for Smart Systems - Computing…
Latesh Malik, Sandhya Arora, …
Hardcover
R4,213
Discovery Miles 42 130
Advances in Evolutionary Computing for…
Vasile Palade, Dipti Srinivasan
Hardcover
R4,050
Discovery Miles 40 500
Analysis of Medical Modalities for…
Varun Bajaj, G. R. Sinha
Hardcover
R4,488
Discovery Miles 44 880
|