![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
There have been several attempts to write the history of Britain's chemical industry as a whole, and countless others concentrating on individual companies. Some have looked at the technical aspects of the industry, whilst others have addressed economic issues. Few have, however, attempted to analyse the effects of the chemical industry on society in general. The current environmental crisis can only be fully understood in the light of its history. This is the first such book to look critically at the whole development of industrial chemistry in the UK in the context of its effects on the environment. No one from industry, government or academia can afford to be unaware of the historical roots of our present dilemma. Industrial chemists can take heart from the realization that their predecessors were remarkably aware of the problems and often found satisfactory solutions. Industrial chemistry has traditionally been seen as the great 'polluter'. Without any attempts at 'whitewash' this book puts the record straight. From academic chemist to industrialist to politician, Chemistry, Society and Environment: A New History of the British Chemical Industry will be of relevance to all those concerned with the social and environmental impact of the chemical industry.
The book covers all stages of process plant projects from initiation to completion and handover by describing the roles and actions of all functions involved. It discusses engineering, procurement, construction, project management, contract administration, project control and HSE, with reference to international contracting and business practices.
Provides a through and systematic discussion on the functionally graded adhesive and its joints Discusses analytical modelling and numerical analyses of the joints Details 3D stress and failure delamination analysis for composite analyses of functionally graded out-of-plane joints under various combinations of loading Illustrates FE Modeling and simulation of interfacial failure and damage propagation in out-of-plane joints Includes effect of various gradation function profiles on damage growth driving forces (SERR)
Scattering Methods and their Application in Colloid and Interface Science offers an overview of small-angle X-ray and neutron scattering techniques (SAXS & SANS), as well as static and dynamic light scattering (SLS & DLS). These scattering techniques are central to the study of soft matter, such as colloidal dispersions and surfactant self-assembly. The theoretical concepts are followed by an overview of instrumentation and a detailed description of the evaluation techniques in the first part of the book. In the second part, several typical application examples are used to show the strength and limitations of these techniques.
Advances in Sugarcane Biorefinery: Technologies, Commercialization, Policy Issues and Paradigm Shift for Bioethanol and By-Products, by Chandel and Silveira, compiles the basic and applied information covering cane and biomass processing for sugar and ethanol production, as well as by-products utilization for improving the economy of sugarcane biorefineries. In this unique collection of 14 chapters, specialists in their field provide critical insights into several topics, review the current research, and discuss future progress in this research area. The book presents the most current advances in sugarcane biorefinery, including sugarcane crop cultivation, new sugarcane varieties, soil health, mechanization of crop, technical aspects of first and second generation ethanol production, economic analysis, life cycle assessment, biomass logistics and storage, co-generation of heat and electricity, process intensification and alternative by-products utilization. The book also explores the business ecosystem of sugarcane biorefineries, marketing analysis of ethanol demand and price dwindling patterns, aiming for a futuristic scenario. This book will be especially useful for scientists, researchers and technicians who are working in the area of biomass based biorefineries, as well as professionals in the sugar and alcohol industry. It also brings relevant content for policy makers, market analysts, agriculture scientists and managers.
A Systems Approach to Managing the Complexities of Process Industries discusses the principles of system engineering, system thinking, complexity thinking and how these apply to the process industry, including benefits and implementation in process safety management systems. The book focuses on the ways system engineering skills, PLM, and IIoT can radically improve effectiveness of implementation of the process safety management system. Covering lifecycle, megaproject system engineering, and project management issues, this book reviews available tools and software and presents the practical web-based approach of Analysis & Dynamic Evaluation of Project Processes (ADEPP) for system engineering of the process manufacturing development and operation phases. Key solutions proposed include adding complexity management steps in the risk assessment framework of ISO 31000 and utilization of Installation Lifecycle Management. This study of this end-to-end process will help users improve operational excellence and navigate the complexities of managing a chemical or processing plant.
Green Chemistry: An Inclusive Approach provides a broad overview of green chemistry for researchers from either an environmental science or chemistry background, starting at a more elementary level, incorporating more advanced concepts, and including more chemistry as the book progresses. Every chapter includes recent, state-of-the-art references, in particular, review articles, to introduce researchers to this field of interest and provide them with information that can be easily built upon. By bringing together experts in multiple subdisciplines of green chemistry, the editors have curated a single central resource for an introduction to the discipline as a whole. Topics include a broad array of research fields, including the chemistry of Earth's atmosphere, water and soil, the synthesis of fine chemicals, and sections on pharmaceuticals, plastics, energy related issues (energy storage, fuel cells, solar, and wind energy conversion etc., greenhouse gases and their handling, chemical toxicology issues of everyday products (from perfumes to detergents or clothing), and environmental policy issues.
Torrefaction of Biomass for Energy Applications: From Fundamentals to Industrial Scale explores the processes, technology, end-use, and economics involved in torrefaction at the industrial scale for heat and power generation. Its authors combine their industry experience with their academic expertise to provide a thorough overview of the topic. Starting at feedstock pretreatment, followed by torrefaction processes, the book includes plant design and operation, safety aspects, and case studies focusing on the needs and challenges of the industrial scale. Commercially available technologies are examined and compared, and their economical evaluation and life cycle assessment are covered as well. Attention is also given to non-woody feedstock, alternative applications, derived fuels, recent advances, and expected future developments. For its practical approach, this book is ideal for professionals in the biomass industry, including those in heat and power generation. It is also a useful reference for researchers and graduate students in the area of biomass and biofuels, and for decision makers, policy makers, and analysts in the energy field.
Direct Thermochemical Liquefaction for Energy Applications presents the state-of-the-art of the value chains associated with these biomass conversion technologies. It covers multiple feedstock availability and feedstock composition impact on process chemistry and product quality and composition. Expert authors from around the world explore co-processing benefits, process parameters, implementation and scaling, upgrading to drop-in liquid biofuels or integration into existing petrochemical refinery infrastructure. Finally, these topics are put into a sustainability perspective by establishing an LCA framework for this type of process. Its focus on implementation based on the most comprehensive knowledge makes this book particularly useful for researchers and graduate students from all sorts of background working in the field of biomass and biofuels. It is also a valuable reference for engineers working to commercialize DTL technologies, engineering specialists designing process equipment, refinery professionals and developers.
3D Bioprinting for Reconstructive Surgery: Techniques and Applications examines the combined use of materials, procedures and tools necessary for creating structural tissue constructs for reconstructive purposes. Offering a broad analysis of the field, the first set of chapters review the range of biomaterials which can be used to create 3D-printed tissue constructs. Part Two looks at the techniques needed to prepare biomaterials and biological materials for 3D printing, while the final set of chapters examines application-specific examples of tissues formed from 3D printed biomaterials. 3D printing of biomaterials for tissue engineering applications is becoming increasingly popular due to its ability to offer unique, patient-specific parts-on demand-at a relatively low cost. This book is a valuable resource for biomaterials scientists, biomedical engineers, practitioners and students wishing to broaden their knowledge in the allied field.
An affordable, easily accessible desk reference on biomanufacturing, focused on downstream recovery and purification Advances in the fundamental knowledge surrounding biotechnology, novel materials, and advanced engineering approaches continue to be translated into bioprocesses that bring new products to market at a significantly faster pace than most other industries. Industrial scale biotechnology and new manufacturing methods are revolutionizing medicine, environmental monitoring and remediation, consumer products, food production, agriculture, and forestry, and continue to be a major area of research. The downstream stage in industrial biotechnology refers to recovery, isolation, and purification of the microbial products from cell debris, processing medium and contaminating biomolecules from the upstream process into a finished product such as biopharmaceuticals and vaccines. Downstream process design has the greatest impact on overall biomanufacturing cost because not only does the biochemistry of different products ( e.g., peptides, proteins, hormones, antibiotics, and complex antigens) dictate different methods for the isolation and purification of these products, but contaminating byproducts can also reduce overall process yield, and may have serious consequences on clinical safety and efficacy. Therefore downstream separation scientists and engineers are continually seeking to eliminate, or combine, unit operations to minimize the number of process steps in order to maximize product recovery at a specified concentration and purity. Based on Wiley's" Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, " this volume features fifty articles that provide information on down- stream recovery of cells and protein capture; process development and facility design; equipment; PAT in downstream processes; downstream cGMP operations; and regulatory compliance. It covers: Cell wall disruption and lysisCell recovery by centrifugation and filtrationLarge-scale protein chromatographyScale down of biopharmaceutical purification operationsLipopolysaccharide removalPorous media in biotechnologyEquipment used in industrial protein purificationAffinity chromatographyAntibody purification, monoclonal and polyclonalProtein aggregation, precipitation and crystallizationFreeze-drying of biopharmaceuticalsBiopharmaceutical facility design and validationPharmaceutical bioburden testingRegulatory requirements Ideal for graduate and advanced undergraduate courses on biomanufacturing, biochemical engineering, biophar- maceutical facility design, biochemistry, industrial microbiology, gene expression technology, and cell culture technology, "Downstream Industrial Biotechnology" is also a highly recommended resource for industry professionals and libraries.
Particles and Interfaces: Interaction, Deposition, Structure, Volume 20, Second Edition unifies particle and protein adsorption phenomena by presenting recent developments in this growing field of nanoscience. While experimental data is available in vast quantities, there is a deficit in quality interpretation of that data. This title provides such information, emphasizing the basic physics behind practical problems, thus empowering the reader to estimate relevant effects. The book includes solved problems of particle transport under non-linear conditions and their relevance to predicting protein adsorption, including an entirely new chapter devoted to polyelectrolyte and protein adsorption at solid/liquid and solid/gas interfaces.
Graphene and Related Nanomaterials: Properties and Applications outlines the physics and the applications of graphene-related materials, including graphene, graphene oxide and carbon nanotubes. The first chapter introduces the physics of graphene and related nanomaterials. The following sections deal with different applications spanning from gas sensors to non-volatile memories and supercapacitors. The book also covers spintronics for graphene. In each chapter, specific applications are explained in a detailed way. This book will appeal to materials scientists and engineers looking to understand more about the nature of graphene and how it is currently being used.
The shape of drops and bubbles is the centre of interest for many
interfacial scientists. This book describes the most recent
accomplishments to make use of drops and bubbles in fundamental
research and application. After a general introduction into the mechanics of liquid
menisci, chapters are dedicated to methods based on drops or
bubbles. The chapters about the three main drop experiments provide
the theoretical basis, a description of experimental set-ups,
specific advantages and disadvantages, correction and calibration
problems, experimental examples and their interpretation: pendent
and sessile drop, drop volume, and spinning drop technique. The maximum bubble pressure technique as a particular capillary
pressure method is described, with emphasis on the most recent
developments which made this technique applicable to extremely
short adsorption times, down to the range of milliseconds and less.
Problems connected with aerodynamics and hydrodynamics are
discussed and used to show the limits of this widely used standard
method. The oscillating bubble technique provides information not
available by other techniques, for example about the dilational
rheology of adsorption layers and relaxation processes at the
interface. The description of rising bubbles in surfactant solutions will
contain the hydrodynamic basis as well as the theoretical
description of the effect of interfacial layers on the movement of
bubbles. Besides the theoretical basis experimental data, such as
water purification, flotation processes etc. and the relevance for
practical applications will be presented. An important example for the application of drops is metallurgy,
where the surface tension of metals and alloys is an important
parameter for many applications. The chapters on drop shape
analysis by using fibre technique and on force measurements between
emulsion droplets are of much practical relevance. Lists of references and symbols are given separately at the end
of each chapter while a common subject index is given at the end of
the book.
Dynamic simulation of bioreactors is a challenge for both the industrial and academic worlds. Beyond the large number of physical and biological phenomena to be considered and the wide range of scales involved, the central difficulty lies in the need to account for the dynamic behavior of suspended microorganisms. In the case of chemical reactors, knowledge of the thermodynamic equilibrium laws at the interfaces makes it possible to produce macroscopic models by integrating local laws. Microorganisms, on the other hand, have the ability to modulate the rate of substrate assimilation. Moreover, the nature of the biochemical transformations results from a compromise between the needs of the cell and the available resources. This book revisits the modeling of bioreactors using a multi-scale approach. It addresses issues related to mixing, phase-to-phase transfers and the adaptation of microorganisms to variations in concentration, and explores the use of population balances for the simulation of bioreactors. By adopting a multidisciplinary perspective that draws on process engineering, fluid mechanics and microbiology, this book sheds new light on the particularity of bioprocesses in relation to physical and chemical phenomena.
Advances in Petrochemical Engineering and Green Development is a compilation of selected papers from the 3rd International Conference on Petrochemical Engineering and Green Development (ICPEGD 2022) and focuses on the research of petrochemical engineering. The proceedings features the most cutting-edge research directions and achievements related to geology and green development. Subjects in this proceedings include: Petroleum and Petrochemical Engineering Fossil Technologies Oil & Gas Production Renewable Energy Sources and Technology Green Synergy Innovation Urban Crisis Management The collection of papers in this proceedings will promote the development of petrochemical industry and energy, resource sharing, flexibility and high efficiency. Thereby, it will promote scientific information interchange between scholars from top universities, research centers and high-tech enterprises working all around the world.
Handbook of Advanced Chromatography /Mass Spectrometry Techniques is a compendium of new and advanced analytical techniques that have been developed in recent years for analysis of all types of molecules in a variety of complex matrices, from foods to fuel to pharmaceuticals and more. Focusing on areas that are becoming widely used or growing rapidly, this is a comprehensive volume that describes both theoretical and practical aspects of advanced methods for analysis. Written by authors who have published the foundational works in the field, the chapters have an emphasis on lipids, but reach a broader audience by including advanced analytical techniques applied to a variety of fields. Handbook of Advanced Chromatography / Mass Spectrometry Techniques is the ideal reference for those just entering the analytical fields covered, but also for those experienced analysts who want a combination of an overview of the techniques plus specific and pragmatic details not often covered in journal reports. The authors provide, in one source, a synthesis of knowledge that is scattered across a multitude of literature articles. The combination of pragmatic hints and tips with theoretical concepts and demonstrated applications provides both breadth and depth to produce a valuable and enduring reference manual. It is well suited for advanced analytical instrumentation students as well as for analysts seeking additional knowledge or a deeper understanding of familiar techniques.
The Alkaloids, Volume 78 is the latest update in a series that has not only covered the topic for more than 60 years, but is also touted as the leading book series in the field of alkaloid chemistry. Topics of note in this updated volume include The Acridone Alkaloids, The Galbulimima-Alkaloids, the Total Synthesis of Lundurine and Related Alkaloids: Recent Applications, The Moschamine-Related Indole Alkaloids, and Alkaloids of the Lauraceae. In more than 75 volumes, all aspects of alkaloids, including chemistry, biology and pharmacology are covered in high-quality, timeless reviews written by renowned experts in the field.
Current Trends and Future Developments on (Bio-) Membranes: Silica Membranes: Preparation, Modelling, Application, and Commercialization discusses one of the most promising inorganic membranes, namely silica membranes, and their different applications. In the field of membrane separation technology, silica membranes play a key role in the future of the chemical industry as one of the most promising alternatives for separations at high temperatures and aggressive media. This book details the latest research findings, along with the potential industrial applications of an area that has seen growing research activity on various type of membranes due to the necessity of gas separation and water treatment processes. Many industrial companies and academic centers will find immense interest in learning about the best strategies for carrying out these processes.
Reaction Engineering clearly and concisely covers the concepts and models of reaction engineering and then applies them to real-world reactor design. The book emphasizes that the foundation of reaction engineering requires the use of kinetics and transport knowledge to explain and analyze reactor behaviors. The authors use readily understandable language to cover the subject, leaving readers with a comprehensive guide on how to understand, analyze, and make decisions related to improving chemical reactions and chemical reactor design. Worked examples, and over 20 exercises at the end of each chapter, provide opportunities for readers to practice solving problems related to the content covered in the book.
Nanolayer Research: Methodology and Technology for Green Chemistry introduces the topic of nanolayer research and current methodology, from the basics, to specific applications for green science. Each chapter is written by a specialist in their specific research area, offering a deep coverage of the topic. Nanofilms are explained, along with their rapidly emerging applications in electronic devices for smart grids, units for cells, electrodes for batteries, and sensing systems for environmental purposes in applicable subjects. Readers will find this book useful not only as a textbook for basic knowledge, but also as a reference for practical research.
PEM Fuel Cell Failure Mode Analysis presents a systematic analysis of PEM fuel cell durability and failure modes. It provides readers with a fundamental understanding of insufficient fuel cell durability, identification of failure modes and failure mechanisms of PEM fuel cells, fuel cell component degradation testing, and mitigation strategies against degradation. The first several chapters of the book examine the degradation of various fuel cell components, including degradation mechanisms, the effects of operating conditions, mitigation strategies, and testing protocols. The book then discusses the effects of different contamination sources on the degradation of fuel cell components and explores the relationship between external environment and the degradation of fuel cell components and systems. It also reviews the correlation between operational mode, such as start-up and shut-down, and the degradation of fuel cell components and systems. The last chapter explains how the design of fuel cell hardware relates to failure modes. Written by international scientists active in PEM fuel cell research, this volume is enriched with practical information on various failure modes analysis for diagnosing cell performance and identifying failure modes of degradation. This in turn helps in the development of mitigation strategies and the increasing commercialization of PEM fuel cells.
We are honoured to present this collection of selected papers from the International Conference on Mixing and Crystallization, held at the Tioman Island, Malaysia in April, 1998. We are grateful to the editorial board comprising five eminent researchers in the field of mixing and crystallization for their thoughtful review and suggestions. In order to make this book as current as possible some of the papers have been thoroughly revised, which caused some delay in bringing out this edited version. We received necessary support from the Institute of Post Graduate Studies and Research, the University of Malaya and the Special Research Centre for Multiphase Processes, and the University of Newcastle, Australia in organizing this conference. We are indebted to the Institute of Chemical Engineers, United Kingdom, and the Institution of Engineers, Malaysia for their sponsorship. We would like to thank K.C. Lim, Dr. C. Ramakanth and Ms. Zubaidah for their help at the various stages of editing. We would also like to express our gratitude to Professor Mohd. Ali Hashim and Dr. Nafis Ahmed for their help and encouragement. Finally, I would like to thank Kluwer Academic Publishers for publishing this book. Bhaskar Sen Gupta Shaliza Ibrahim University of Malaya, Kuala Lumpur xi CFD MODELLING OF HYDRODYNAMIC CONDITIONS WITHIN THE WAKE OF MIXING IMPELLER BLADES 1 G.D. RIGByl., G. LANE . AND G.M. EVANSl.
The announcement that we had decoded the human genome in 2000 ushered in a new and unique era in biomedical research and clinical medicine. This Third Edition of Principles of Gender-Specific Medicine focuses, as in the past two editions, on the essentials of sexual dimorphism in human physiology and pathophysiology, but emphasizes the latest information about molecular biology and genomic science in a variety of disciplines. Thus, this edition is a departure from the previous two; the editor solicited individual manuscripts from innovative scientists in a variety of fields rather than the traditional arrangement of sections devoted to the various subspecialties of medicine edited by section chiefs. Wherever it was available, these authors incorporated the latest information about the impact of the genome and the elements that modify its expression on human physiology and illness. All chapters progress translationally from basic science to the clinical applications of gender-specific therapy and suggest the most important topics for future investigation. This book is essential reading for all biomedical investigators and medical educators involved in gender-specific medicine. It will also be useful for primary care practitioners who need information about the importance of sex and gender in the prevention, diagnosis and treatment of illness. Winner of the 2018 PROSE Award in Clinical Medicine from the Association of American Publishers!
Environmental Inorganic Chemistry for Engineers explains the principles of inorganic contaminant behavior, also applying these principles to explore available remediation technologies, and providing the design, operation, and advantages or disadvantages of the various remediation technologies. Written for environmental engineers and researchers, this reference provides the tools and methods that are imperative to protect and improve the environment. The book's three-part treatment starts with a clear and rigorous exposition of metals, including topics such as preparations, structures and bonding, reactions and properties, and complex formation and sequestering. This coverage is followed by a self-contained section concerning complex formation, sequestering, and organometallics, including hydrides and carbonyls. Part Two, Non-Metals, provides an overview of chemical periodicity and the fundamentals of their structure and properties. |
![]() ![]() You may like...
Programming for Computations - Python…
Svein Linge, Hans Petter Langtangen
Hardcover
R1,693
Discovery Miles 16 930
Clinical Case Studies on Medication…
Yaser Mohammed Al-Worafi
Paperback
R3,652
Discovery Miles 36 520
|