![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
This book analyzes hydrocarbon generation and accumulation within space-limited source rocks. The authors draw conclusions based on the principles of basin formation, hydrocarbon generation and accumulation, coupled with the practice of terrigenous basins in eastern China. Hydrocarbon generation and expulsion have been quantitatively assessed in space-limited source rock systems. This book explores new hydrocarbon generation and expulsion models to reflect real geological situations more accurately. The theory and practice proposed in this book challenge the traditional theory of kerogen thermal degradation and hydrocarbon generation.
The petrochemical industry is a scientific and engineering field that encompasses the production of a wide range of chemicals and polymers. The purpose of this book is not only to provide a follow-on to form the later chapters of the highly successful Chemistry and Technology of Petroleum 5th Edition but also provides a simplified approach to a very diverse chemical subject dealing with the chemistry and technology of various petroleum and petrochemical process. Following from the introductory chapters, this book provides the readers with a valuable source of information containing insights into petrochemical reactions and products, process technology, and polymer synthesis. Provides readers with a valuable source of information containing insights into petrochemical reactions and products, process technology, and polymer synthesis Introduces the reader to the various petrochemical intermediates are generally produced by chemical conversion of primary petrochemicals to form more complicated derivative products The reactions and processes involved in transforming petroleum-based hydrocarbons into the chemicals that form the basis of the multi-billion dollar petrochemical industry are reviewed and described The book includes information on new process developments for the production of raw materials and intermediates for petrochemicals Includes a description of the origin of the raw materials for the petrochemicals industry - including an overview of the coal chemicals industry
Methanol - The Chemical and Energy Feedstock of the Future offers a visionary yet unbiased view of methanol technology. Based on the groundbreaking 1986 publication "Methanol" by Friedrich Asinger, this book includes contributions by more than 40 experts from industry and academia. The authors and editors provide a comprehensive exposition of methanol chemistry and technology which is useful for a wide variety of scientists working in chemistry and energy related industries as well as academic researchers and even decision-makers and organisations concerned with the future of chemical and energy feedstocks.
The main objective of this volume is to demonstrate the importance of the fundamental aspects of interfacial phenomena in various industrial applications. The text provides the reader with the knowledge that is essential for the composition of the complex multi-phase systems used in the above mentioned areas of application. It should enable the physical and formulation chemist as well as the chemical engineer in designing the formulation on the basis of a rational approach. It will also enable the formulation scientist to better understanding the factors responsible for producing a stable product with optimum application conditions. The book should also be very useful for teaching the subject of formulation at academic institutions.
This book highlights the importance of Facilitated Transport Membranes (FTMs) for the application of carbon capture, covering its introduction, gas transport phenomena and models, reaction mechanisms, industrial applications such as bio-gas upgradation, flue gas separation, hydrogen gas and natural gas purification, fabrication methods of both FTMs and their carrier mediums, testing/characterization techniques, techno-analysis with up-to-date trends and the future outlooks. Climate change and environmental impacts are resulted due to greenhouse gases, particularly CO2. The industrial revolution is currently causing the augmented emission of greenhouse gases. Therefore, various technologies are being looked at to overcome these problems. In which, membrane technology is key among them and is envisaged for many industrial applications, especially for gas separations and carbon capture. Considering this, FTMs are being actively investigated due to their remarkable gas separation performance. This book describes the working principle of FTMs and includes case studies to explore their impact on different industrial applications. Also, the book highlights how FTMs are reshaping science to capture CO2 for reducing climate and environmental impacts.
This book shows the promising future and essential issues on the storage of the supercritical gases, including hydrogen, methane and carbon dioxide, by adsorption with controlling the gas-solid interaction by use of designed nanoporous materials. It explains the reason why the storage of these gases with adsorption is difficult from the fundamentals in terms of gas-solid interaction. It consists of 14 chapters which describe fundamentals, application, key nanoporous materials (nanoporous carbon, metal organic frame works, zeolites) and their storage performance for hydrogen, methane, and carbon dioxide. Thus, this book appeals to a wide readership of the academic and industrial researchers and it can also be used in the classroom for graduate students focusing on clean energy technology, green chemistry, energy conversion and storage, chemical engineering, nanomaterials science and technology, surface and interface science, adsorption science and technology, carbon science and technology, metal organic framework science, zeolite science, nanoporous materials science, nanotechnology, environmental protection, and gas sensors.
Life Cycle of a Process Plant focuses on workflows, work processes, and interfaces. It is an ideal reference book for engineers of all disciplines, technicians, and business people working in the upstream, midstream, and downstream fields. This book is tailored to the everyday work tasks of the process and project engineer/manager and relates regulations to actions engineers can take in the workplace via case studies. It covers oil, gas, chemical, petrochemical, and carbon capture industries. The content in this book will be interesting for any engineers (from all disciplines) and other project team members who understand the technical principles of their work, but who would like to have a better idea of where their contribution fits into the complete picture of the life cycle of a process plant. This book shows the basic principles and approaches of process plant lifecycle information management and how they can be applied to generate substantial cost and time savings. Thus, the readers with their own knowledge and experience in plant design and operations can adapt and implement them into their specific plant lifecycle applications.
This book provides readers with the most current knowledge on hazardous waste management practices. It addresses the rapidly changing advances in waste stream characterization and the discovery of new chemicals - which have led to new hazardous wastes, technological innovation, stringent environmental regulations, changes in transport and dispersion modelling of hazardous pollutants, and new waste management techniques. Hazardous Waste Management: Advances in Chemical and Industrial Waste Treatment and Technologies is an invaluable reference for waste management and treatment professionals, chemical engineers and technicians, medical professionals, and environmental regulators, as well as students taking courses on hazardous waste management, environmental engineering, and environmental science.
This book collates the latest trends and technological advancements in bioremediation, especially for its monitoring and assessment. Divided into 18 chapters, the book summarizes basic concepts of waste management and bioremediation, describes advancements of the existing technologies, and highlights the role of modern instrumentation and analytical methods, for environmental clean-up and sustainability. The chapters cover topics such as the role of microbial fuel cells in waste management, microbial biosensors for real-time monitoring of bioremediation processes, genetically modified microorganisms for bioremediation, application of immobilized enzyme reactors, spectroscopic techniques, and in-silico approaches in bioremediation monitoring and assessment. The book will be advantageous not only to researchers and scholars interested in bioremediation and sustainability but also to professionals and policymakers.
This book focuses on carbon dioxide and its global role in our everyday life. Starting with society's dependency on energy, it demonstrates the various sources of carbon dioxide and discusses the putative effects of its accumulation in the atmosphere and its impact on the climate. It then provides an overview of how we can reduce carbon dioxide production and reviews innovative technologies and alternative energy resources. The book closes with a perspective on how carbon dioxide can be utilized reasonably and how mimicking nature can provide us with a solution. Using simple language, this book discusses one of today's biggest challenges for the future of our planet in a way that is understandable for the general public. The authors also provide deep insights into specific issues, making the book a useful resource for researchers and students.
This is the only book that covers containment, specifically for the
process industries. This Guide covers the range of containment
equipment from simple air-flow control devices to enclosures that
restrict exposures to well below a microgram per cubic meter
averaged over a working day. The selection of a particular
containment system for a particular transfer operation can be
difficult because of the wide choice available. This Guide provides
a structured approach to the selection process.
This book provides a systematic and comprehensive introduction to the technical principles, materials, processes, and equipment of the electron beam wire deposition technology (EBWD), while focusing on the research results of the author's scientific research team engaged in this technology in China. It mainly introduces the conceptual connotation, principle, and characteristics of the EBWD technology, its position and function in the additive manufacturing technology system, the direction and trend of technological development at home and abroad, the fundamentals and application results of the EBWD technology, including technical principles, equipment technology, special materials, manufacturing technology, quality testing, and application practices. So this book can serve as a reference book for teachers, students, and scientific researchers in scientific research institutions who are engaged in relevant studies.
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
Contents - PART 1 - The Unique Position of the Carbon Atom in Chemistry - 1. The Nature of Organic Chemistry - 2. The Organic Chemist Looks at a Molecule - 3. Valence - 4. New Ideas on Valence - 5. The Unique Position of Carbon among the Elements - 6. The O C T E T in Chemistry - 7. The D U E T in Chemistry - 8. North and South Poles - PART 2 - The Architecture of Carbon Compounds - 9. Methane and the Structure Theory - 10. Carbon Chains - 11. Carbon Rings - 12. Morphology of Chain and Ring Compounds - 13. Double and Triple Bonds - 14. Energy and Molecular Structure - 15. PI Electrons - 16. Bond Energies and Resonance - 17. How Molecules React - 18. Why Molecules React - 19. The Benzene Ring - 20. Nuclear Reactions - 21. The Geography of the Benzene Ring - 22. Stereochemistry and Isomerism - PART 3 - The Classification of Carbon Compounds - 23. The Common Methods of Classification in Organic Chemistry - 24. Halogen Compounds and Free Radicals - 25. Alcohols, Phenols, and Ethers - 26. Aldehydes and Ketones - 27. Carboxylic Acids - 28. Mixed Oxygen Compounds - 29. Nitrogen Compounds - 30. Compounds with Sulphur, Phosphorus, and Other Elements - PART 4 - Special Topics in Organic Chemistry - 31. Structures of Complex Compounds - 32. Aromatic Character in Heterocycles and Condensed Cycles - 33. Proteins - 34. Carbohydrates - 35. Chemistry in Plant and Animal Life - 36. Dyes - 37. Isotopic Chemistry - 38. Giant Molecules - Supplementary Reading - Index - Preface - When Dr. Frank C. Whitmore was president of the American Chemical Society in 1938 and made the customary tour of local ACS sections, he used that occasion to spread the gospel of the electron theory of valence. At one of his lectures the author of this book sat in the audience among a mixed group of chemists consisting of technicians, students, and college graduates. The lack of familiarity of organic chemists with the electron was so obvious that it aroused in the author an urge to write an elementary introduction to organic chemistry in which the role of the electron would be emphasized. This book is especially intended to serve two groups of readers: those engaged in work of a chemical nature who are not able to take a classroom course in organic chemistry, and those in a college course who find they have a need for a supplementary book to help clarify the approach to modern organic chemistry. In other words, the book was conceived as an integrated introduction to both electron-valence theory and organic chemistry at a level suitable for self-study. The first edition of this book appeared in 1943 during World War II. A second edition, much enlarged, was published in 1955. For this third edition the book has been extensively rewritten, and more than enough material has been added so that it can serve as a textbook for a one-year college course. The novel arrangement of the subject matter in the earlier editions has been maintained. A teacher who prefers to lecture largely from his own notes should find no difficulty incorporating his material into the simple plan on which this book is based.
This book is a compilation of selected papers from the Fourth International Technical Symposium on Deepwater Oil and Gas Engineering & The Third International Youth Forum on Gas Hydrate, held in Qingdao, China in December 2021. The work focuses on the advancement of techniques for the deepwater oil and gas exploitation and natural gas hydrate exploitation. The book introduces new ideas for exploring deepwater oil and gas hydrate in a safe and efficient way. Advances of the natural gas hydrate pilot production in South China Sea, in oil and gas flow assurance and emerging technologies based on clathrate hydrate will be presented. It is a valuable resource for both practitioners and academics working in the field of deepwater oil and gas engineering.
Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip: Principles and Applications provides chemists, biophysicists, engineers, life scientists, biotechnologists, and pharmaceutical scientists with the principles behind the design, manufacture, and testing of life sciences microfluidic systems. This book serves as a reference for technologies and applications in multidisciplinary areas, with an emphasis on quickly developing or new emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology. The book offers practical guidance on how to design, analyze, fabricate, and test microfluidic devices and systems for a wide variety of applications including separations, disease detection, cellular analysis, DNA analysis, proteomics, and drug delivery. Calculations, solved problems, data tables, and design rules are provided to help researchers understand microfluidic basic theory and principles and apply this knowledge to their own unique designs. Recent advances in microfluidics and microsystems for life sciences are impacting chemistry, biophysics, molecular, cell biology, and medicine for applications that include DNA analysis, drug discovery, disease research, and biofluid and environmental monitoring.
Studies in catalyst deactivation play a major role in the
identification of the real catalytic system, in particular, the
structure and texture of the solid, which is often in a metastable
state, as it is operated in the industrial reactor. These studies
also allow the identification of the experimental conditions which
preserve this active and selective state. This is crucial for a
real understanding of catalysts and catalysis. Another area of
catalytic science concerns reactions kinetics, which, if properly
determined, are of paramount importance in the elucidation of
mechanisms. The behavior of the kinetics during aging and
deactivation and an accurate modeling of the evolution of activity
and selectivity are essential information for the process
performance. These are just two typical examples, but quite
generally, the science of catalyst deactivation is going to be more
oriented to fundamental issues.
This book discusses financial, managerial and engineering aspects associated with project engineering. The book is a text/reference book on courses related to project engineering for undergraduate students of Chemical Engineering programmes. The author has utilized her decade-long professional experience with reputed project consultancy organizations and her academic experience in writing this book. The background of project engineering is described with special emphasis on its interdisciplinary nature. Project management techniques are discussed with the help of worked-out examples. It includes multiple choice questions and information regarding relevant courses in different institutes. The book is useful for undergraduate degree and diploma students as well as for fresh graduate engineering trainees in various process consulting organizations.
CONTENTS - Distillation of Naphtha, Gasoline, Kerosene, Jet Fuel and Similar Products - Vacuum Distillation - Distillation of Aromatic Hydrocarbons - Determination of High-Boiling Fractions in Isopropyl Ether - Test for Light Ends in Isobutylene and Similar Products - Flash Point by the Tag Closed Tester (Abel Flash Point) - Flash and Fire Points by the Cleveland Open Cup (Marcusson Flash Point) - Flash Point by the Pensky-Martens Closed Tester - Determining the Nonvolatile Matter in CTLA Polymers - Rapid Method for Comparative Evaporation Rates of Solvents - Gravity of Petroleum Products by the Hydrometer - Specific Gravity by Means of the Pycnometer - Viscosity Determination by the Saybolt Viscometer - Determination of the Kinematic Viscosity of Petroleum Products by Glass Viscometers - Color of Petroleum Products by the Tag-Robinson Colorimeter (Color Stability of Lubricants) - Color of White Petroleum Products by the Saybolt Chromometer - Determining the Color of Solvents by the Platinum-Cobalt System - Gardner's Method of Determining the Color of Solvents - Determination of the Acid Wash Color of Industrial Aromatic Hydrocarbons - Sulfur by Lamp (Closed System) - Doctor Test - Determination of Sulfur in Petroleum Products - Heavier than Illuminating Oils - Qualitative Detection of Sulfur Gases in Industrial Aromatic Hydrocarbons - Detection of Thiophene in Benzene - Ash and Water-Soluble Ash Content of Petroleum Oils - Cloud and Pour Points of Petroleum Products (Dilute Pour Point) - Detecting Oxidizable Matter in Solvents (Permanganate Test) - Permanaganate Time Test (Improved Visual Method) - Holde Hard Asphalt Test - Determination of the Gumming Properties of Gasoline by Means of a Copper Dish - Determination of Water in Petroleum Products by the Karl Fischer Reagent - Determination of Water in Hydrocarbon Gases by the Karl Fischer Reagent - Acidity of Industrial Aromatic Hydrocarbons - Determination of the Unsaponifiable Matter in, and the Neutralization Number of, Naphthenic Acids - Aniline Point - Wijs' Iodine Number - Bromine Number (Lewis and Bradstreet Method) - Determination of the Bromine Index of Xylene - Determination of the Available Cyclopentadiene and Methylcyclopentadienes in Dimers - Determination of Cyclopentadiene in Isoprene - Determination of the Total Conjugated Diolefin Content of Isoprene - Complete Analysis of Distilled Isobutylene by Infrared Spectrometry - Solubility of Pentachlorophenol in Petroleum Oils - Determination of Lower Ketones - Determination of the Alcohol Content by Acetylation - Water Dilution of Alcohol - Determination of Alcohol Content by Specific Gravity - Test for Mixed Alcohols (Hydroxyl Number) - Acetone in Isopropyl Alcohol by Ultraviolet Spectrometry - Ester Content of Solvents - Tests for Specification Grades of Ethyl Ether - Determination of the Carbonyl Compounds in Petrochemical Products (Carbonyl Number) - Determination of Peroxides in Isopropyl Ether - Peroxide Number of Petroleum Products - Determination of the Residual Odor of Heavy Petroleum Solvents - Amino-Type Inhibitors in Gasoline - Determination of tert-Butylcatechol Inhibitor in Unsaturated Heavy Hydrocarbons - Flash Point by the Tag Open Cup - a-Naphthol in Ether - Sampling and Testing Lacquer Solvents and Diluents - Index -
This book offers a comprehensive review of the latest developments, challenges and trends in C1-based (one-carbon based) bioproduction, and it presents an authoritative account of one-carbon compounds as promising alternative microbial feedstocks. The book starts with a perspective on the future of C1 compounds as alternative feedstocks for microbial growth, and their vital role in the establishment of a sustainable circular carbon economy, followed by several chapters in which expert contributors discuss about the recent strategies and address key challenges regarding one or more C1 feedstocks. The book covers topics such as acetogenic production from C1 feedstocks, aerobic carboxydotrophic bacteria potential in industrial biotechnology, bioconversion of methane to value-added compounds, combination of electrochemistry and biology to convert C1 compounds, and bioprocesses based on C1-mixotrophy. Particular attention is given to the current metabolic engineering, systems biology, and synthetic biology strategies applied in this field.
This third edition is a comprehensive and extended study about the best known approaches for preparing the main types of glycosides, covering the classic and more recent glycosylation reactions used for preparing simple and challenging glycosides currently used as potent antiviral and antineoplastic drugs, or fluorogenic substrates used for enzymatic detection in cell biology. Besides, this new edition provides more examples of the glycosidic methodologies followed for preparing complex glycoconjugates such as glycoproteins and glycosphingolipids and gangliosides used as adjuvants or as synthetic vaccines candidates. Also, additional mechanistic evidence is presented for better understanding of the glycosylation reaction, trying to identify the variables mainly depending on protecting and leaving groups, as well as catalyst and reaction condition which altogether directs the anomeric stereo control. A chapter on the glycoside hydrolysis is included in view of the increasing interest in the use of biomass as a natural and renewable source for obtaining important intermediates or products used in food or valuable materials. The author includes information in the characterization of glycosides section with the aim of giving additional tools for the structural assignment through NMR, X-Ray and mass spectra techniques.
This book explains the aspiring vision of a sustainable hydrogen generating system which employs nanotechnology one way or the other and presents a detailed update on research activities, achievements and challenges. It explores how nanotechnology is reshaping science in general and how this can be applied to the generation and storage of hydrogen energy. This book begins by highlighting the importance of hydrogen a source of sustainable energy and its impact on the technical advances of fuel cells, internal combustion engines, batteries and power plants. The book depicts the role of nanotechnology in the development of sustainable hydrogen. Comprehensive studies on various nanotechnologies involved in hydrogen generation are discussed in separate chapters, representing a complete picture of hydrogen generation utilizing nanotechnology. This book serves as a useful research tool for academics and practitioners looking towards new ways to develop and consume energy, without conceding our environment. Providing the advantages and disadvantages of each technology discussed, this book shows the benefits of utilizing nanotechnology in this field.
This book presents a theoretical analysis of the modern methods used for modeling various chemical engineering processes. Currently, the two primary problems in the chemical industry are the optimal design of new devices and the optimal control of active processes. Both of these problems are often solved by developing new methods of modeling. These methods for modeling specific processes may be different, but in all cases, they bring the mathematical description closer to the real processes by using appropriate experimental data. In this book, the authors detail a new approach for the modeling of chemical processes in column apparatuses. Further, they describe the types of neural networks that have been shown to be effective in solving important chemical engineering problems. Readers are also presented with mathematical models of integrated bioethanol supply chains (IBSC) that achieve improved economic and environmental sustainability. The integration of energy and mass processes is one of the most powerful tools for creating sustainable and energy efficient production systems. This book defines the main approaches for the thermal integration of periodic processes, direct and indirect, and the recent integration of small-scale solar thermal dryers with phase change materials as energy accumulators. An exciting overview of new approaches for the modeling of chemical engineering processes, this book serves as a guide for the important innovations being made in theoretical chemical engineering.
The recently published book by the author, "Engineering Heat Transfer," already dealt with exact computation of heat exchangers and tube banks. In design c- putationthisisaccomplishedviacorrectivefactors;thelattermakesitpossibleto compute the actual mean temperature difference by starting from the logarithmic onerelativeto?uidsinparallel?oworcounter?ow. As far as veri?cation computation is concerned, corrective factors were int- ducedtocomputeacertaincharacteristicfactorcorrectly, asisfundamentalforthis typeofcomputation. Basedontheabove, theauthordecidedtoinvestigatefurther, re?ne, andwiden thistopic: theoutcomeofthisworkhasresultedinthishandbook. Newtypesofexchangerswereexamined;thecalculationwasre?nedtoproduce practicallyexactvaluesforthefactors. Thescopeoftheinvestigationwasincreased by widening the range of the starting factors. Furthermore, a greater number of valuestobeincludedinthetableswasconsidered. Finally, afewcharacteristicsof certainvaluesofthecorrectivefactorswerehighlighted. The?rstsectionisanintroduction;itsummarizesthefundamentalcriteriaofheat transferandproceedstoillustratethebehaviorof?uidsinbothparallelandcounter ?ow. Italsoshowshowtocomputethemeanisobaricspeci?cheatforsome?uids; itillustratesthesigni?canceofdesigncomputationandveri?cationcomputation. In addition, itillustrateshowtoproceedwithheatexchangersandtubebankstocarry outbothdesignandveri?cationcomputationcorrectly. AppendixAthenincludes36tablesasareferencefordesigncomputation, The tablescontainthecorrectivefactorsrequiredtoobtaintheactualmeantemperature differencebystartingfromthemeanlogarithmictemperaturedifferencerelativeto ?uidsinparallel?oworcounter?ow. Finally, Appendix B includes 35 tables for veri?cation computation. As far as heatexchangers areconcerned, itshowsthevaluesoffactor ? whichisrequired forthistypeofcomputation. Thevaluesofthecorrectivefactorsforcoilsandtube banksarealsopresented. Milano, Italy DonatelloAnnaratone v Notation c=speci?cheat(J/kgK) d=diameter(m) E=ef?ciencyfactor h=enthalpy(kJ/kg) k=thermalconductivity(W/mK) M=mass?owrate(kg/s) m=massmoisturepercentage(%) q=heatpertimeunit(W) 2 S=surface(m ) ? t=temperature( C) 2 U=overallheattransfercoef?cient(W/m K) x=thickness(m) 2 ? =heattransfercoef?cient(W/m K) ? =characteristicfactor ? =characteristicfactor ? =ef?ciency ? =correctivefactor ? =correctivefactor ? =characteristicfactor ? ?t=temperaturedifference( C) vii viii Notation Superscripts =heating?uid =heated?uid Subscripts c=counter?ow e=exchanger i=inside l=logarithmic m=mean o=outside p=constantpressure(isobaric), parallel?ow w=wall 1=inlet(forheatingorheated?uid) 2=outlet(forheatingorheated?uid) Contents 1 Introduction to Computation . . . . . . . . . . . . . . . . . . . . . 1 1. 1 GeneralConsiderations . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 MeanIsobaricSpeci?cHeat . . . . . . . . . . . . . . . . . . . . 3 1. 2. 1 WaterandSuperheatedSteam . . . . . . . . . . . . . . . 4 1. 2. 2 AirandOtherGases. . . . . . . . . . . . . . . . . . . . 4 2 Design Computation. . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 2 FluidsinParallelFloworinCounterFlow . . . . . . . . . . . . 8 2. 3 TheMeanDifferenceinTemperatureinReality . . . . . . . . . 12 2. 3. 1 FluidsinCrossFlow. . . . . . . . . . . . . . . . . . . . 14 2. 3. 2 HeatExchangers. . . . . . . . . . . . . . . . . . . . . . 15 2. 3. 3 Coils. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2. 3. 4 TubeBankswithVariousPassagesoftheExternalFluid . 21 |
![]() ![]() You may like...
Biomass, Biofuels, Biochemicals…
Parmeswaran Binod, Sindhu Raveendran, …
Paperback
R4,674
Discovery Miles 46 740
The Chemistry of Textile Fibres
Robert R Mather, Roger H. Wardman
Hardcover
R1,370
Discovery Miles 13 700
Advances in the Use of Liquid…
Achille Cappiello, Pierangela Palma
Hardcover
R6,740
Discovery Miles 67 400
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R4,145
Discovery Miles 41 450
Ionic Liquids - From Knowledge to…
Natalia Plechkova, Robin Rogers, …
Hardcover
R3,497
Discovery Miles 34 970
|