![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
The use of electrochemical techniques by chemists, particularly those who regard themselves as "inorganic" coordination chemists, has undergone a very rapid growth in the last 15-20 years. The techniques, as dassically applied to inorganic species, had their origins in analytical chemistry, and the methodology had assumed, until the mid 60s, more importance than the chemiStry. However, the growth of interest in coordination compounds (including organometallic complexes) having unusually rich of electron-transfer in bio-inorganic redox properties, and in the understanding species, has propelfed electro-chemistry into the foreground of potentially readily available techniques for application to a very wide range of problems of interest to those chemists. This growth has been fuelled additionally by the availability of relatively cheap equipment of growing sophistication and by an increase in the "inorganic" chemists' general knowledge of physical electrochemistry. In particular, with increasing availability and sophistication of eqUipment, kinetic problems are now being addressed, and the range of electrode types and configuration and solvents has been greatly expanded. Furthermore, the rapid expansion of interest in biological problems has opened new avenues in functionalisation of electrodes, in the development of sensory devices and, in a sense, a return to the analytical base of the science, using novel and multi-disciplinary techniques drawing on synthesis chemistry of and electronic micro-engeneering. The drive towards increasing use microcomputer-controlled data analysis and the development of microeledrodes has opened exciting new avenues for the exploration of chemical reactions involving electron-transfer processes.
Recognized experts present incisive analysis of both fundamental and applied problems in this continuation of a highly acclaimed series. Topics discussed include: A thorough and mathematical treatment of periodic phenomena, with consideration of new theories about the transition between `order' and `chaos'; Impedance spectroscopy as applied to the study of kinetics and mechanisms of electrode processes; The use of stoichiometric numbers in mechanism analysis; The electro-osmotic dewatering of clays with important implications for the processing of industrial waste and geotechnical; stabilization; Magnetic effects in electrolytic processes and the electrolytic Hall effect; and The computer analysis and modeling of mass transfer and fluid flow. These authoritative studies will be invaluable for researchers in engineering, electrochemistry, analytical chemistry, materials science, physical chemistry, and corrosion science.
This book is an introduction to the dynamics of reaction-diffusion systems, with a focus on fronts and stationary spatial patterns. Emphasis is on systems that are non-standard in the sense that either the transport is not simply classical diffusion (Brownian motion) or the system is not homogeneous. A important feature is the derivation of the basic phenomenological equations from the mesoscopic system properties. Topics addressed include transport with inertia, described by persistent random walks and hyperbolic reaction-transport equations and transport by anomalous diffusion, in particular subdiffusion, where the mean square displacement grows sublinearly with time. In particular reaction-diffusion systems are studied where the medium is in turn either spatially inhomogeneous, compositionally heterogeneous or spatially discrete. Applications span a vast range of interdisciplinary fields and the systems considered can be as different as human or animal groups migrating under external influences, population ecology and evolution, complex chemical reactions, or networks of biological cells. Several chapters treat these applications in detail.
During the many years of its publication and subsequent revisions, Paul Jellinek's book has been the standard work on its subject. This new edition, translated into English for the first time, was conceived in response to the increased interest in recent years in perfumes and the sense of smell. This interest has come not only from within the highly competitive perfumery industry, but also from psychologists and market researchers. The original text has impressively withstood the test of time and the approach of this new book has been to supplement it with chapters that are now of critical importance, but which were only touched upon in the original book. A market researcher looks at why people use perfumes; a psychologist examines the motivation of perfume choice; another psychologist discusses odours and a perfumer looks at the effects of odours on human experience and behaviour. In the final chapter the editor compares the original author's views with those of today's experts and suggests which aspects are still valid and in what areas divergent views now prevail. This book is written principally to provide a scientific basis to the craft of perfumery and to enable formulators and marketeers to understand why the smells they create and sell have the effect they do. It allows a systematic approach to the development of these products. Others outside the industry, including psychologists in academia, will find the book an essential reference source.
The book offers a comprehensive report on the design and optimization of a thermochemical heat storage system for use in buildings. It combines theoretical and experimental work, with a special emphasis on model-based methods. It describes the numerical modeling of the heat exchanger, which allows recovery of about two thirds of the waste heat from both solar and thermal energy. The book also provides readers with a snapshot of current research on thermochemical storage systems, and an in-depth review of the most important concepts and methods in thermal management modeling. It represents a valuable resource for students, engineers and researchers interested in thermal energy storage processes, as well as for those dealing with modeling and 3D simulations in the field of energy and process engineering.
This book covers the fundamental requirements for air, soil and water pollution control in oil and gas refineries, chemical plants, oil terminals, petrochemical plants, and related facilities. In this concise volume, Dr. Bahadori elucidates design and operational considerations relevant to critical systems such as the waste water treatment units, solid waste disposal, and waste water sewer treatment as well as engineering/technological methods related to soil and air pollutions control. Engineers and technical managers in a range of industries will benefit from detail on a diverse list of topics."
In modern drug discovery and development, chemical synthesis is one of the key technologies. For the rapid preparation of new test compounds and drug development candidates, several innovative technologies with great potential have emerged: Microreactor chemistry; Nanotechnology and catalysis research; Microwave-assisted organic synthesis; New developments in solid supported synthesis. This book covers lectures about the theory, use, scope and limitations of these new technologies in chemical synthesis. It provides a useful overview for scientists in the pharmaceutical industry as well as in academic institutions interested in chemical synthesis for drug discovery and development.
Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.
This volume presents essential information on chemical reagents commonly used in flotation processes. It comprehensively summarizes the properties, preparation and applications of collectors, frothers, depressants and flocculants. It also discusses the microanalysis of flotation reagents and adsorption measurement. The book offers a valuable resource for all university researchers and students, as wells as R&D engineers in minerals processing and extractive metallurgy who wish to explore innovative reagents and technologies that lead to more energy efficient and environmentally sustainable solutions.
Alistair Lennox's thesis reports on the reactivity of organotrifluoroborates, which are becoming increasingly important reagents in synthesis. The thesis is divided into three sections. The first section describes a method for preparing organotrifluoroborates. The second section reports on a mechanistic investigation into the main application of RBF3K reagents as coupling partners in Suzuki-Miyaura coupling, phenomena identified as arising from organotrifluoroborate hydrolysis and fluoride release. The final section reports on a detailed investigation into the hydrolysis mechanism, a prerequisite for their Suzuki-Miyaura coupling, and how it may be predicted and controlled. This research has uncovered many interesting and useful details and shows how problems associated with Suzuki-Miyaura coupling can best be addressed. There has already been wide industrial uptake of the new procedures and insights. The broad nature and clear and succinct style will make the thesis a valuable resource for anyone working in synthesis, organometallic chemistry, or in homogeneous catalysis.
Practical applications of soft-matter dynamics are of vital
importance in material science, chemical engineering, biophysics
and biotechnology, food processing, plastic industry, micro- and
nano-system technology, and other technologies based on
non-crystalline and non-glassy materials.
Advances in Catalysis, Volume 71 highlights new advances in the field, with this new volume presenting interesting chapters on a variety of topics, including Advances in the catalytic and photocatalytic behavior of carborane derived metal complexes, Transition metal catalyzed synthesis of derivatives of polyhedral boron hydrides with B-N, B-P, B-O and B-S bonds, Recent advances in transition metal catalyzed selective cage BH functionalization of o-carboranes, Boron Compounds for Catalytic Applications, Regioselective Carborane B-H/C-H Functionalization, and Derivatization of monocarborane and dodecaborate anions by controlled B-H activation.
In a Functionally Graded Material (FGM), the composition and structure gradually change over volume, resulting in corresponding changes in the properties of the material. By applying the many possibilities inherent in the FGM concept, it is anticipated that materials will be improved and new functions for them created. A comprehensive description of design, modelling, processing, and evaluation of FGMs as well as their applications is covered in this book. In the simplest FGMs, two different material ingredients change gradually from one to the other. Discontinuous changes such as a stepwise gradation of the material ingredients can also be considered an FGM. The most familiar FGM is compositionally graded from a refractory ceramic to a metal. It can incorporate incompatible functions such as the heat, wear, and oxidation resistance of ceramics and the high toughness, high strength, machinability and bonding capability of metals without severe internal thermal stress. Pores are also important material ingredients for FGMs. The gradual increase of pore distribution from the interior to the surface can impart many properties such as mechanical shock resistance, thermal insulation, catalytic efficiency and relaxation of thermal stress. Even if the gradation of material ingredients is limited to a specific location in the material such as the interface, a joint, or a surface, it can be considered a functionally graded material because it includes the FGM concept. Although the FGM concept can be extended to materials with functions that are designed to change gradually over time or with changes in environmental conditions (e.g. a drug delivery system), these time-dependent functions areproduced by tailoring the spatial distribution of the material ingredients. The production of multiple or new functions with graded structures rather than the graded material itself is the basis of the FGM concept reflected in this book.
This book builds on and extends the previous book: Perfumery: the psychology and biology of fragrance. Thus, a large part of the book reviews the latest evidence on olfaction research which is relevant to the study of perfumery psychology.
This monograph presents design methodologies for (robust) fractional control systems. It shows the reader how to take advantage of the superior flexibility of fractional control systems compared with integer-order systems in achieving more challenging control requirements. There is a high degree of current interest in fractional systems and fractional control arising from both academia and industry and readers from both milieux are catered to in the text. Different design approaches having in common a trade-off between robustness and performance of the control system are considered explicitly. The text generalizes methodologies, techniques and theoretical results that have been successfully applied in classical (integer) control to the fractional case. The first part of Advances in Robust Fractional Control is the more industrially oriented. It focuses on the design of fractional controllers for integer processes. In particular, it considers fractional-order proportional-integral-derivative controllers, because integer-order PID regulators are, undoubtedly, the controllers most frequently adopted in industry. The second part of the book deals with a more general approach to fractional control systems, extending techniques (such as H-infinity optimal control and optimal input-output inversion based control) originally devised for classical integer-order control. Advances in Robust Fractional Control will be a useful reference for the large number of academic researchers in fractional control, for their industrial counterparts and for graduate students who want to learn more about this subject.
Catalysis for Enabling Carbon Dioxide Utilization, Volume 70 in the Advances in Catalysis series highlights new advances in the field, with this new volume presenting interesting chapters on a variety of topics, including Catalytic nonreductive CO2 conversions to facilitate fine chemical synthesis, Electrochemical transformation of CO2 into methanol, Electrocatalytic routes towards Carbon Dioxide Activation and Utilization, Visible-light photoredox-catalyzed organic transformations with CO2, Heterogeneous catalysis for the conversion of CO2into cyclic and polymeric carbonates, and Catalytic synthesis of biosourced organic carbonates and sustainable hybrid materials from CO2.
This volume constitutes the proceedings of the Fourth International Workshop on Materials Processing at High Gravity, held at Clarkson University, May 29 to June 2, 2000. There were 73 attendees from 16 countries. Since the topics extended well beyond materials processing, it was felt appropriate to name this proceedings "Centrifugal Processing." Processing by Centrifugation includes the traditional bench-scale centrifuges, as well as all rotating systems utilizing the centrifugal and Coriolis forces to provide unique performance. Centrifugation led to the formation of sticky porous Teflon membranes, as well as improved polymeric solar cells. Centrifugation on large equipment improved the chemical vapor deposition of diamond films, influenced the growth and dissolution of semiconductor crystals, and elucidated the influence of gravity on coagulation of colloidal Teflon. A million g centrifuge was constructed and used to study sedimentation in solids and to prepare compositionally graded materials and new phases. Rotation of a pipe about its axis allowed the casting of large-diameter metal alloy pipes as well as coating the interior of pipes with a cermet utilizing self-propagating high-temperature synthesis. Such coatings are highly corrosion and erosion resistant. Flow on a rotating disk was shown to be useful for process intensification, such as large-scale manufacturing of nano-particles, polymerization reactions, and heat & mass transfer. Several theoretical studies dealt with the influence of rotation on fluid convection on surfaces and in pipes, tubes, and porous media. These have applications to integrated-circuit chip manufacturing, alloy casting, oil production, crystal growth, and the operation of rotating machinery.
Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting is the first proprietary manual for cleaning and rehabilitation through pressure-washing, hydro-blasting and ultra high pressure water jetting (UHP). It examines the cleaning, restoration and rehabilitation of statuary and historical structures; manufacturing hardware; and application technologies for residential, commercial and industrial areas, structures and buildings. Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting contains over 450 applications from agricultural, marine, municipal, food processing, paper-pulp, pharmaceutical and cosmetic, industrial and power generating maintenance areas. It includes gear lists to help readers easily identify the appropriate tooling and equipment for each specific application and industry. Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting supplies readers with the tools to create a successful business model for retaining and safeguarding corporate application itineraries. It is a valuable guide for maintenance superintendents, buyers of maintenance services, contractors, field technicians, engineers and architects involved in commercial-industrial cleaning.
This thesis describes the inception, design, and implementation of stereoselective desymmetrization reactions in the total synthesis of the natural products pactamycin and paspaline. In the case of pactamycin, the author develops a novel asymmetric Mannich reaction and symmetry-breaking reduction strategy to enable facile construction of the complex core architecture in fifteen steps using commercially available materials - the shortest synthesis to date. He subsequently demonstrates the flexibility of this approach in SAR investigations by highlighting the preparation of twenty-five unique pactamycin structural congeners. For paspaline, the author develops a biocatalytic desymmetrization strategy that allows the highly controlled synthesis of core stereochemistry and provides a platform for the development of new conceptual disconnections in the synthesis of "steroid-like" natural products. This thesis offers a valuable resource for students embarking on a PhD in total synthesis.
Strain Measurement in Biomechanics will provide a valuable reference source for all research workers in biomechanics and biomaterials as well as orthopaedic manufacturers and orthopaedic surgeons.
This book connects a retrosynthetic or disconnection approach with synthetic methods in the preparation of target molecules from simple, achiral ones to complex, chiral structures in the optically pure form. Retrosynthetic considerations and asymmetric syntheses are presented as closely related topics, often in the same chapter, underlining the importance of retrosynthetic consideration of target molecules neglecting stereochemistry and equipping readers to overcome the difficulties they may encounter in the planning and experimental implementation of asymmetric syntheses. This approach prepares students in advanced organic chemistry courses, and in particular young scientists working at academic and industrial laboratories, for independently solving synthetic problems and creating proposals for the synthesis of complex structures.
During the past ten years, evidence has developed to indicate that seawater convects through oceanic crust driven by heat derived from creation of lithosphere at the Earth-encircling oceanic ridge-rift system of seafloor spreading centers. This has stimulated multiple lines of research with profound implications for the earth and life sciences. The lines of research comprise the role of hydrothermal convection at seafloor spreading centers in the Earth's thermal regime by cooling of newly formed litho sphere (oceanic crust and upper mantle); in global geochemical cycles and mass balances of certain elements by chemical exchange between circulating seawater and basaltic rocks of oceanic crust; in the concentration of metallic mineral deposits by ore-forming processes; and in adaptation of biological communities based on a previously unrecognized form of chemosynthesis. The first work shop devoted to interdisciplinary consideration of this field was organized by a committee consisting of the co-editors of this volume under the auspices of a NATO Advanced Research Institute (ARI) held 5-8 April 1982 at the Department of Earth Sciences of Cambridge University in England. This volume is a product of that workshop. The papers were written by members of a pioneering research community of marine geologists, geophysicists, geochemists and biologists whose work is at the stage of initial description and interpretation of hydrothermal and associated phenomena at seafloor spreading centers.
This book offers a comprehensive review on biomass resources, examples of biorefineries and corresponding products. The first part of this book covers topics such as different biorefinery resources from agriculture, wood processing residues and transport logistics of plant biomass. In the second part, expert contributors present biorefinery concepts of different biomass feedstocks, including vegetable-oils, sugarcane, starch, lignocellulose and microalgae. Readers will find here a summary of the syngas utilization and the bio-oil characterization and potential use as an alternative renewable fuel and source for chemical feedstocks. Particular attention is also given to the anaerobic digestion-based and Organosolv biorefineries. The last part of the book examines relevant products and components such as alcohols, hydrocarbons, bioplastics and lignin, and offers a sustainability evaluation of biorefineries.
Johannes G. de Vries: Pd-catalyzed coupling reactions.- Gregory T. Whiteker and Christopher J. Cobley: Applications of Rhodium-Catalyzed Hydroformylation in the Pharmaceutical, Agrochemical and Fragrance Industries.- Philippe Dupau: Ruthenium-catalyzed Selective Hydrogenation for Flavor and Fragrance Applications.- Hans-Ulrich Blaser, Benoit Pugin and Felix Spindler: Asymmetric Hydrogenation.- Ioannis Houpis: Case Study: Sequential Pd-catalyzed Cross-Coupling Reactions; Challenges on Scale-up.- Adriano F. Indolese: Pilot Plant Scale Synthesis of an Aryl-Indole - Scale up of a Suzuki Coupling.- Per Ryberg: Development of a Mild and Robust Method for Palladium Catalysed Cyanation on Large Scale.- Cheng-yi Chen: Application of Ring Closing Metathesis Strategy to the Synthesis of Vaniprevir (MK-7009), a 20-Membered Macrocyclic HCV Protease Inhibitor. |
![]() ![]() You may like...
Qualitative and Quantitative Models in…
Jose Luis Sarasola-Sanchez-Serrano, Fabrizio Maturo, …
Hardcover
R4,450
Discovery Miles 44 500
China Satellite Navigation Conference…
Changfeng Yang, Jun Xie
Hardcover
R7,693
Discovery Miles 76 930
Understanding Crime and Place - A…
Elizabeth R. Groff, Cory P. Haberman
Hardcover
|