Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
The series Topics in Heterocyclic Chemistry presents critical reviews on present and future trends in the research of heterocyclic compounds. Overall the scope is to cover topics dealing with all areas within heterocyclic chemistry, both experimental and theoretical, of interest to the general heterocyclic chemistry community. The series consists of topic related volumes edited by renowned editors with contributions of experts in the field.
This book explores effective environmental impact mitigation for petroleum-based lubricants to reduce their negative persistence during usage and upon end-of-life disposal. The book reviews the basic tribology of lubricants as well as initiatives that may enhance the environmental and economic effectiveness of lubricating oils from the composition design perspective across industries. Considering the blending, application, and disposal of petroleum lubricants in a holistic manner, the book presents and extends current best practices that minimize or eliminate adverse environmental impact throughout the product's life cycle. The book reviews methods including: raw material substitution, minimizing oil losses during and after manufacturing, raw material and energy consumption reduction, and environmentally friendly applications of oil disposal as ways forward for cleaner and more effective production. This book provides readers with strategies for incorporating cleaner production practices into their operations - a benefit to both environmental legal compliance and business competitiveness - all the while preserving the environment for sustainable development. The book is therefore of interest to both manufacturers and consumers in the lubricants industry.
Volume 2 of the updated and extended 3rd edition of this work focuses on the chemistry and technology of rigid polyurethanes. Recent developments in obtaining polyols from renewable resources and the field of rigid polyurethanes have been included. This book is of interest to chemists and engineers in industry and academia as well as anyone working with polyols for the manufacture of PUs.
The book provides a systematic view on flammability and a collection of solved engineering problems in the fields of dilution and purge, mine gas safety, clean burning safety and gas suppression modeling. For the first time, fundamental principles of energy conservation are used to develop theoretical flammability diagrams and are then explored to understand various safety-related mixing problems. This provides the basis for a fully-analytical solution to any flammability problem. Instead of the traditional view that flammability is a fundamental material property, here flammability is discovered to be a result of the explosibility of air and the ignitability of fuel, or a process property. By exploring the more fundamental concepts of explosibility and ignitability, the safety targets of dilution and purge can be better defined and utilized for guiding safe operations in process safety. This book provides various engineering approaches to mixture flammability, benefiting not only the safety students, but also field operators, as a useful resource for the safe handling of flammable gases and liquids. It will be useful to anyone who worries about the ignition potential of a flammable mixture.
This book presents studies on the surface modification of aluminum and titanium alloys by electric explosive alloying and electron-beam processing. It also describes and analyzes the physical mechanism of energy actions of these technologies on physical and mechanical properties and discusses their potential use in industry to improve the characteristics of finished products. The book is intended for specialists in the field of condensed matter physics, metallurgy and heat treatment and materials science, as well as graduate and senior students in relevant fields.
This book addresses conventional and new predictive methodologies for estimating thermophysical properties of heavy petroleum fluids. For the unidentifiable fractions forming the fluids, chemical structures are calculated so that property estimation methods for mixtures of identifiable components are now available for such fractions. Chemical and multiphase equilibriums are of utmost importance; hence, the most significant ones involving heavy petroleum fluids are determined and illustrated using advanced equations of state such as sPC-SAFT and EoS/GE. The included phase equilibriums are phase envelopes of reservoir fluids, asymmetric mixtures between light solvents and bitumen including the presence of water and asphaltenes, among others. Besides, heavy petroleum fluids are analyzed from the Newtonian and non-Newtonian viewpoints, exploring their complex rheological behavior. Finally, complemented by online an Excel program for the thermodynamic characterization of unidentifiable petroleum fractions, this book is a useful resource for engineers and researchers in the petroleum industry and is also of interest to students studying chemical and petroleum engineering.
This new volume of Modern Aspects of Electrochemistry reviews different methods for the production of metal powders including mechanical, chemical and electrochemical powders. Electrochemically produced metal powders are of high purity and they are extremely active during sintering. These powders find a wide-range of applications in automotive, aerospace, energy device and electronics industries.
first industrial application of MPC was in 1973. A key motivation was to provide better performance than could be obtained with the widely-used PID controller whilst making it easy to replace the PID controller unit or module with his new algorithm. It was the advent of digital control technology and the use of software control algorithms that made this replacement easier and more acceptable to process engineers. A decade of industrial practice with PFC was reported in the archival literature by Jacques Richalet et al. in 1978 in an important seminal Automatica paper. Around this time, Cutler and Ramaker published the dynamic matrix control algorithm that also used knowledge of future reference signals to determine a sequence of control signal adjustment. Thus, the theoretical and practical development of predictive control methods was underway and subsequent developments included those of generalized predictive control, and the whole armoury of MPC methods. Jacques Richalet's approach to PFC was to seek an algorithm that was: * easy to understand; * easy to install; * easy to tune and optimise. He sought a new modular control algorithm that could be readily used by the control-technician engineer or the control-instrument engineer. It goes without saying that this objective also forms a good market strategy.
This book treats modeling and simulation in a simple way, that builds on the existing knowledge and intuition of students. They will learn how to build a model and solve it using Excel. Most chemical engineering students feel a shiver down the spine when they see a set of complex mathematical equations generated from the modeling of a chemical engineering system. This is because they usually do not understand how to achieve this mathematical model, or they do not know how to solve the equations system without spending a lot of time and effort. Trying to understand how to generate a set of mathematical equations to represent a physical system (to model) and solve these equations (to simulate) is not a simple task. A model, most of the time, takes into account all phenomena studied during a Chemical Engineering course. In the same way, there is a multitude of numerical methods that can be used to solve the same set of equations generated from the modeling, and many different computational languages can be adopted to implement the numerical methods. As a consequence of this comprehensiveness and combinatorial explosion of possibilities, most books that deal with this subject are very extensive and embracing, making need for a lot of time and effort to go through this subject. It is expected that with this book the chemical engineering student and the future chemical engineer feel motivated to solve different practical problems involving chemical processes, knowing they can do that in an easy and fast way, with no need of expensive software.
This book presents an overview of fundamental aspects of surface-based biosensors and techniques for enhancing their detection sensitivity and speed. It focuses on rapid detection using miniaturized sensors and describes the physical principles of nanoscale transducers, surface modifications, microfluidics and reaction engineering, diffusion and kinetics. A key challenge in the field of bioanalytical sensors is the rapid delivery of target biomolecules to the sensing surface. While various nanostructures have shown great promise in sensitive detection, diffusion-limited binding of analyte molecules remains a fundamental problem. Recently, many researchers have put forward novel schemes to overcome this challenge, such as nanopore channels, electrokinetics, and dielectrophoresis, to name but a few. This book provides the readers an up-to-date account on these technological advances.
This book addresses the analysis, in the continuum regime, of biological systems at various scales, from the cellular level to the industrial one. It presents both fundamental conservation principles (mass, charge, momentum and energy) and relevant fluxes resulting from appropriate driving forces, which are important for the analysis, design and operation of biological systems. It includes the concept of charge conservation, an important principle for biological systems that is not explicitly covered in any other book of this kind. The book is organized in five parts: mass conservation; charge conservation; momentum conservation; energy conservation and multiple conservations simultaneously applied. All mathematical aspects are presented step by step, allowing any reader with a basic mathematical background (calculus, differential equations, linear algebra, etc.) to follow the text with ease. The book promotes an intuitive understanding of all the relevant principles and in so doing facilitates their application to practical issues related to design and operation of biological systems. Intended as a self-contained textbook for students in biotechnology and in industrial, chemical and biomedical engineering, this book will also represent a useful reference guide for professionals working in the above-mentioned fields.
This book describes different approaches for solving industrial problems like product design, process optimization, quality enhancement, productivity improvement and cost minimization. Several optimization techniques are described. The book covers case studies on the applications of classical as well as evolutionary and swarm optimization tools for solving industrial issues. The content is very helpful for industry personnel, particularly engineers from the Operation, R&D and Quality Assurance sectors, and also the academic researchers of different engineering and/or business administration background.
The 5th volume of Green Chemical Processing considers sustainable chemistry in the context of governmental and corporate interests, explaining how "red tape" can help or hinder the "greening" of industry processes. The American Chemical Society's 12 Principles of Green Chemistry are woven throughout this text as well as the series to which this book belongs.
Modeling and Control of Batch Processes presents state-of-the-art techniques ranging from mechanistic to data-driven models. These methods are specifically tailored to handle issues pertinent to batch processes, such as nonlinear dynamics and lack of online quality measurements. In particular, the book proposes: a novel batch control design with well characterized feasibility properties; a modeling approach that unites multi-model and partial least squares techniques; a generalization of the subspace identification approach for batch processes; and applications to several detailed case studies, ranging from a complex simulation test bed to industrial data. The book's proposed methodology employs statistical tools, such as partial least squares and subspace identification, and couples them with notions from state-space-based models to provide solutions to the quality control problem for batch processes. Practical implementation issues are discussed to help readers understand the application of the methods in greater depth. The book includes numerous comments and remarks providing insight and fundamental understanding into the modeling and control of batch processes. Modeling and Control of Batch Processes includes many detailed examples of industrial relevance that can be tailored by process control engineers or researchers to a specific application. The book is also of interest to graduate students studying control systems, as it contains new research topics and references to significant recent work. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book provides important insights into the combustion behavior of novel energy crops and agricultural fuels. It describes a new experimental approach to combustion evaluation, involving fundamental, bench-scale and commercial-scale studies. The studies presented were conducted on two representative biomass energy crops: a woody biomass poplar (Populus sp. or poplar) and an herbaceous biomass brassica (Brassica carinata or brassica). Moreover, agricultural residues of Manihot esculenta or cassava were also analyzed. The main accomplishments of this work are threefold. Firstly, it offers an extensive characterization of the above-mentioned fuels, their ash chemistry and their emissions of both solid particles and gaseous compounds that form at typical grate combustion conditions. Secondly, it presents an in-depth analysis of ash fractionation processes for major ash species. Thirdly, it describes the role of some critical and volatile key elements (K, Cl, S and P) in grate-fired combustion systems and elucidates the main differences in the ash chemistry during combustion of Si-rich and P-rich fuels. All in all, this work provides novel insights on the basic and fundamental mechanisms of biomass grate combustion with a special focus on ash transformation and highlights important issues and recommendations that need to be considered for an appropriate conversion of ash-rich fuels and for the development of future technology in the context of both small- and medium-scale biomass-based heat and power production.
This book provides a systematic and comprehensive treatment of the variety of methods available for applying data reconciliation techniques. Data filtering, data compression and the impact of measurement selection on data reconciliation are also exhaustively explained. Data errors can cause big problems in any process plant or
refinery. Process measurements can be correupted by power supply
flucutations, network transmission and signla conversion noise,
analog input filtering, changes in ambient conditions, instrument
malfunctioning, miscalibration, and the wear and corrosion of
sensors, among other factors. Here's a book that helps you detect,
analyze, solve, and avoid the data acquisition problems that can
rob plants of peak performance. This indispensable volume provides
crucial insights into data reconciliation and gorss error detection
techniques that are essential fro optimal process control and
information systems.
This unique thesis discusses the development of conceptually novel and synthetically valuable methods that use visible light photocatalysis. Each chapter addresses a different topic in the emerging field of photocatalysis, which has become an indispensable tool for organic synthesis. Photocatalysis employs environmentally harmless and abundant visible light in the presence of a photosensitizer, and as such offers an attractive alternative to harmful UV light in photo-mediated reactions. This book introduces the novel concept of merging gold catalysis with visible light photocatalysis in a dual catalytic fashion, which demonstrates their compatibility with each other for first time and has inspired the development of various reactions. Moreover, a novel trifluoromethylation method, which combines radical addition chemistry with a polar rearrangement to synthesize valuable fluorinated compounds, is presented, since compounds featuring fluorinated functionality are the subject of increasing attention in pharmaceutical, agrochemical and material research. It also develops an external photocatalyst-free photochemical method for the synthesis of valuable indolizine heterocycles, where the product mediates its own formation. Lastly, it describes the synthesis and characterization of two novel highly porous metal-organic frameworks (MOFs). The comprehensive text is rounded out with illustrations and color figures.
Many cooling systems use water as cooling medium. They are found in public buildings, industrial production systems or power plants. Almost every cooling system using water is degraded by deposition, corrosion and microbiological fouling. This book identifies the whole bunch of problems due to water cooling systems and proposes specific solutions to all of them. The authors have an expertise of over 20 years solving cooling water problems. In this book, they advise all practitioners which need to plan, buy or operate cooling systems.
Special distillation processes are required for separation of
mixtures close to boiling point or for forming azeotrope mixtures
into their pure components. In Special Distillation Processes, the
authors focus on latest developments in the field, such as
separation methods that may prove useful for solving problems
encountered during research. Topics include extraction, membrane
and adsorption distillation involving the separation principle,
process design and experimental techniques. The relationship
between the processes and the techniques are also presented.
Comprehensive and easy-to-read, this book provides key information
needed to understand the processes and is a valuable reference
source for chemical engineers as well as students wishing to branch
out in chemical engineering.
The shift towards being as environmentally-friendly as possible has resulted in the need for this important volume on the topic of green nanoscience. Edited by two rising stars in the community, Alvise Perosa and Maurizio Selva, this is an essential resource for anyone wishing to gain an understanding of the world of green chemistry, as well as for chemists, environmental agencies and chemical engineers. The "Handbook of Green Chemistry" comprises of 9 volumes in total, split into 3 subject-specific sets. The three sets are available individually. All 9 volumes are available individually, too. Set I: Green Catalysis - Volume 1: Homogeneous Catalysis - Volume 2: Heterogeneous Catalysis - Volume 3: BiocatalysisSet II: Green Solvents - Volume 4: Supercritical Solvents - Volume 5: Reactions in Water - Volume 6: Ionic LiquidsSet III: Green Processes - Volume 7: Green Synthesis - Volume 8: Green Nanoscience - Volume 9: Designing Safer Chemicals The "Handbook of Green Chemistry" is also available as Online Edition. PodcastsListen to two podcasts in which Professor Paul Anastas and Journals Editor Paul Trevorrow discuss the origin and expansion of Green Chemistry and give an overview of "The Handbook of Green Chemistry."
This graduate textbook, written by a former lecturer, addresses industrial chemical reaction topics, focusing on the commercial-scale exploitation of chemical reactions. It introduces students to the concepts behind the successful design and operation of chemical reactors, with an emphasis on qualitative arguments, simple design methods, graphical procedures, and frequent comparison of capabilities of the major reactor types. It starts by discussing simple ideas before moving on to more advanced concepts with the support of numerous case studies. Many simple and advanced exercises are present in each chapter and the detailed MATLAB code for their solution is available to the reader as supplementary material on Springer website. It is written for MSc chemical engineering students and novice researchers working in industrial laboratories.
This first volume of the updated and extended 3rd edition of this work covers the basic chemistry and technology of oligo-polyol fabrication, the characteristics of the various oligo-polyol families and the effects of their structure on the properties of the resulting PU. This book is of interest to chemists and engineers in industry and academia as well as anyone working with polyols for the manufacture of PUs.
This book records the new research findings and development in the field of industrial engineering and engineering management, and it will serve as the guidebook for the potential development in future. It gathers the accepted papers from the 25th International conference on Industrial Engineering and Engineering Management held at Anhui University of Technology in Maanshan during August 24-25, 2019. The aim of this conference was to provide a high-level international forum for experts, scholars and entrepreneurs at home and abroad to present the recent advances, new techniques and application, to promote discussion and interaction among academics, researchers and professionals to promote the developments and applications of the related theories and technologies in universities and enterprises, and to establish business or research relations to find global partners for future collaboration in the field of Industrial Engineering. It addresses diverse themes in smart manufacturing, artificial intelligence, ergonomics, simulation and modeling, quality and reliability, logistics engineering, data mining and other related fields. This timely book summarizes and promotes the latest achievements in the field of industrial engineering and related fields over the past year, proposing prospects and vision for the further development. |
You may like...
Synthesis and Chemistry of…
Don R. Baker, Joseph G. Fenyes, …
Hardcover
R2,104
Discovery Miles 21 040
Remediation of Hazardous Waste in the…
Clayton J. Clark, Angela Stephenson Lindner
Hardcover
R5,176
Discovery Miles 51 760
Recent Advances in Disinfection…
Tanju Karanfil, Bill Mitch, …
Hardcover
R6,031
Discovery Miles 60 310
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,587
Discovery Miles 25 870
Hybrid Composites - Processing…
Kaushik Kumar, B Sridhar Babu
Hardcover
R5,510
Discovery Miles 55 100
Rheology and Processing of Polymers
Khalid Lamnawar, Abderrahim Maazouz
Hardcover
R1,853
Discovery Miles 18 530
|