Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
This book presents current research into the catalytic combustion of methane using perovskite-type oxides (ABO3). Catalytic combustion has been developed as a method of promoting efficient combustion with minimum pollutant formation as compared to conventional catalytic combustion. Recent theoretical and experimental studies have recommended that noble metals supported on (ABO3) with well-ordered porous networks show promising redox properties. Three-dimensionally ordered macroporous (3DOM) materials with interpenetrated and regular mesoporous systems have recently triggered enormous research activity due to their high surface areas, large pore volumes, uniform pore sizes, low cost, environmental benignity, and good chemical stability. These are all highly relevant in terms of the utilization of natural gas in light of recent catalytic innovations and technological advances. The book is of interest to all researchers active in utilization of natural gas with novel catalysts. The research covered comes from the most important industries and research centers in the field. The book serves not only as a text for researcher into catalytic combustion of methane, 3DOM perovskite mixed oxide, but also explores the field of green technologies by experts in academia and industry. This book will appeal to those interested in research on the environmental impact of combustion, materials and catalysis.
This book gives background information why shale formations in the world are important both for storage capacity and enhanced gas recovery (EGR). Part of this book investigates the sequestration capacity in geological formations and the mechanisms for the enhanced storage rate of CO2 in an underlying saline aquifer. The growing concern about global warming has increased interest in geological storage of carbon dioxide (CO2). The main mechanism of the enhancement, viz., the occurrence of gravity fingers, which are the vehicles of enhanced transport in saline aquifers, can be visualized using the Schlieren technique. In addition high pressure experiments confirmed that the storage rate is indeed enhanced in porous media. The book is appropriate for graduate students, researchers and advanced professionals in petroleum and chemical engineering. It provides the interested reader with in-depth insights into the possibilities and challenges of CO2 storage and the EGR prospect.
This book is a simple and didactic account of the developments and practical applications of predictive, adaptive predictive, and optimized adaptive control from a perspective of stability, including the latest methodology of adaptive predictive expert (ADEX) control. ADEX Optimized Adaptive Control Systems is divided into six parts, with exercises and real-time simulations provided for the reader as appropriate. The text begins with the conceptual and intuitive knowledge of the technology and derives the stability conditions to be verified by the driver block and the adaptive mechanism of the optimized adaptive controller to guaranty the desired control performance. The second and third parts present strategic considerations of predictive control and related adaptive systems necessary for the proper design of driver block and adaptive mechanism and thence their technical realization. The authors then proceed to detail the stability theory that supports predictive, adaptive predictive and optimized adaptive control methodologies. Benchmark applications of these methodologies (distillation column and pulp-factory bleaching plant) are treated next with a focus on practical implementation issues. The final part of the book describes ADEX platforms and illustrates their use in the design and implementation of optimized adaptive control systems to three different challenging-to-control industrial processes: waste-water treatment; sulfur recovery; and temperature control of superheated steam in coal-fired power generation. The presentation is completed by a number of appendices containing technical background associated with the main text including a manual for the ADEX COP platform developed by the first author to exploit the capabilities of adaptive predictive control in real plants. ADEX Optimized Adaptive Control Systems provides practicing process control engineers with a multivariable optimal control solution which is adaptive and resistant to perturbation and the effects of noise. Its pedagogical features also facilitate its use as a teaching tool for formal university and Internet-based open-education-type graduate courses in practical optimal adaptive control and for self-study.
The present work focuses on the development of intensified small-scale extraction units for spent nuclear fuel reprocessing using advanced process engineering with combined experimental and modelling methodologies. It discusses a number of novel elements, such as the intensification of spent fuel reprocessing and the use of ionic liquids as green alternatives to organic solvents. The use of ionic liquids in two-phase liquid-liquid separation is new to the Multiphase Flow community, and has proved to be challenging, especially in small channels, because of the surface and interfacial properties involved, which are very different to those of common organic solvents. Numerical studies have been also performed to couple the hydrodynamics at small scale with the mass transfer. The numerical results, taken together with scale-up studies, are used to evaluate the applicability of the small-scale units in reprocessing large volumes of nuclear waste.
The book covers various topics of heat transfer. It explains and analyzes several techniques and modes of heat transfer such as conduction in stationary media, convection in moving media and also by radiation. It is primarily a text book useful for undergraduate and postgraduate students. The book should also interest practicing engineers who wish to refresh their knowledge in the field. The book presents the various topics in a systematic way starting from first principles. The topics are developed to a fairly advanced level towards the end of each chapter. Several worked examples illustrate the engineering applications of the basic modeling tools developed in the text. The exercises at the end of the book are arranged chapter wise and challenge the reader to tackle typical real-life problems in heat transfer. This book will be of potential use for students of mechanical engineering, chemical engineering and metallurgy in most engineering colleges.
This thesis describes novel strategies for the rational design of several cutting-edge high-efficiency photocatalysts, for applications such as water photooxidation, reduction, and overall splitting using a Z-Scheme system. As such, it focuses on efficient strategies for reducing energy loss by controlling charge transfer and separation, including novel faceted forms of silver phosphate for water photooxidation at record high rates, surface-basic highly polymerised graphitic carbon nitride for extremely efficient hydrogen production, and the first example of overall water splitting using a graphitic carbon nitride-based Z-Scheme system. Photocatalytic water splitting using solar irradiation can potentially offer a zero-carbon renewable energy source, yielding hydrogen and oxygen as clean products. These two 'solar' products can be used directly in fuel cells or combustion to provide clean electricity or other energy. Alternatively they can be utilised as separate entities for feedstock-based reactions, and are considered to be the two cornerstones of hydrogenation and oxidation reactions, including the production of methanol as a safe/portable fuel, or conventional catalytic reactions such as Fischer-Tropsch synthesis and ethylene oxide production. The main driving force behind the investigation is the fact that no photocatalyst system has yet reported combined high efficiency, high stability, and cost effectiveness; though cheap and stable, most suffer from low efficiency.
Tribology is usually defined as "the science and technology of interacting surfaces in relative motion". It includes the research and application of principles of friction, wear, lubrication and design. Green tribology involves tribological aspects of environmental and biological impacts. This multidisciplinary field of science and technology is very important for the development of new products in mechanics, materials, chemistry, life sciences and by extension for all modern industry. The current volume aims to provide recent information on progress in green tribology. Chapter 1 provides information on tribological materials (an eco-sustainable perspective), while chapter 2 is dedicated to preparation and tribology performance of bio-based ceramic particles from rice waste and chapter 3 describes tribological behavior and tribochemistry of Ti3SiC2 in water and alcohols. Chapter 4 contains information on modelling and analysis of the oil-film pressure of a hydrodynamic journal bearing lubricated by nano based bio-lubricants using a D-optimal design. Finally, chapter 5 is dedicated to wear performance of oil palm seed fibre reinforced polyester composite aged in brake fluid solutions. The current volume can be used as a research book for final undergraduate in engineering courses or as a topic on green tribology at postgraduate level. This book can also serve as useful reference for academics, researchers, mechanical, materials, environmental and manufacturing engineers, professionals green tribology and related industries.
This book is dedicated to the rapidly growing field of microporous
ceramic membranes with separating layers of pore diameter less than
2nm.
This thesis reports the latest developments in the direct amination of various C H bonds using an H Zn exchange/electrophilic amination strategy. McDonald and co-workers reveal this approach to be a rapid and powerful method for accessing a variety of functionalized amines. The material outlined in this book shows how McDonald achieved C H zincation using strong, non-nucleophilic zinc bases and subsequent electrophilic amination of the corresponding zinc carbanions with copper as a catalyst and O-benzoylhydroxylamines as the electrophilic nitrogen source. McDonald's findings are of relevance to medicinal chemistry, drug discovery and materials science. Her thesis is a source of inspiration for scientists entering the field and students beginning their PhD in a related area.
This monograph provides an account of how the synthetic nitrogen industry became the forerunner of the 20th-century chemical industry in Europe, the United States and Asia. Based on an earlier SpringerBrief by the same author, which focused on the period of World War I, it expands considerably on the international aspects of the development of the synthetic nitrogen industry in the decade and a half following the war, including the new technologies that rivalled the Haber-Bosch ammonia process. Travis describes the tremendous global impact of fixed nitrogen (as calcium cyanamide and ammonia), including the perceived strategic need for nitrogen (mainly for munitions), and, increasingly, its role in increasing crop yields, including in Italy under Mussolini, and in the Soviet Union under Stalin. The author also reviews the situation in Imperial Japan, including the earliest adoption of the Italian Casale ammonia process, from 1923, and the role of fixed nitrogen in the industrialization of colonial Korea from the late 1920s. Chemists, historians of science and technology, and those interested in world fertilizer production and the development of chemical industry during the first four decades of the twentieth century will find this book of considerable value.
This book offers a straightforward, informative guide to the chemicals used for gas hydrate formation and inhibition, providing the reader with the latest information on the definition, structure, formation conditions, problems, and applications of gas hydrates. The authors review not only the inhibitors used to prevent or mitigate hydrate formation, but also the conditions under which it is necessary to form hydrates quickly, which require the use of promoters. Various promoters are discussed, including their specifications, functions, advantages and disadvantages. The possibility of using natural reservoirs of gas hydrate as an energy source is also considered. Lastly, due to the difficulty of conducting experiments that reflect all conditions and concentrations, the book presents a number of models that can predict the basic parameters in the presence of the chemicals. Given its scope, the book will be of interest to professionals working in this field in an industrial context, as well as to researchers, undergraduate and graduate students of chemical engineering.
This volume presents the latest developments in the use of organometallic catalysis for the formation of bulk chemicals and the production of energy, via green processes including efficient utilization of waste feedstocks from industry. The chemistry of carbon dioxide relating to its hydrogenation into methanol -an eco-friendly energy storage strategy- and its uses as C1 synthon for the formation of important building-blocks for fine chemicals industry are covered. Catalytic hydrogenations of various functional groups and hydrogen transfer reactions including the use of first row metal catalysts are presented as well as the conversion of alcohols to carboxylates via hydrogen transfer with a zero-waste strategy using water. Transformation of renewable or bio-based raw materials is surveyed through alkene metathesis and C-O bond activations and functionalizations. A green aspect for selective formation of C-C, C-O and C-N bonds involves direct regioselective C-H bond activations and functionalizations. These transformations can now be promoted under mild reaction conditions due to the use photoredox catalyts. C-H bond oxidation using visible light leads mainly to the formation of C-O and C-N bonds, whereas cross-coupled C-C bonds can be formed through the radical additions on (hetero) arenes using photoredox assisted mechanism.
This book presents articles from the World Conference on Acoustic Emission 2019 (WCAE-2019) held at Guangdong, China. The latest research and applications of acoustic emission (AE) are explored, with a particular emphasis on detecting and processing AE signals, the development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques. Numerous case studies are also included. It brings together leading academicians and professionals in the field to foster collaboration and to enhance research in this important area, with wide ranging applications.
This book covers the recent research advances on the utilization of date palm fibers as a new source of cellulosic fibers that can be used in the reinforcement of polymer composites. It discusses the competitive mechanical, physical, and chemical properties which make date palm fibers stand out as an alternative to other fibers currently used in the natural fiber composites market. This volume will be useful to researchers working on natural fiber composites and fiber reinforced composites looking to develop green, biodegradable and sustainable components for application in automotive, marine, aerospace, construction, wind energy and consumer goods sectors.
Simulation of ODE/PDE Models with MATLAB(r), OCTAVE and SCILAB shows the reader how to exploit a fuller array of numerical methods for the analysis of complex scientific and engineering systems than is conventionally employed. The book is dedicated to numerical simulation of distributed parameter systems described by mixed systems of algebraic equations, ordinary differential equations (ODEs) and partial differential equations (PDEs). Special attention is paid to the numerical method of lines (MOL), a popular approach to the solution of time-dependent PDEs, which proceeds in two basic steps: spatial discretization and time integration. Besides conventional finite-difference and element techniques, more advanced spatial-approximation methods are examined in some detail, including nonoscillatory schemes and adaptive-grid approaches. A MOL toolbox has been developed within MATLAB(r)/OCTAVE/SCILAB. In addition to a set of spatial approximations and time integrators, this toolbox includes a collection of application examples, in specific areas, which can serve as templates for developing new programs. Simulation of ODE/PDE Models with MATLAB(r), OCTAVE and SCILAB provides a practical introduction to some advanced computational techniques for dynamic system simulation, supported by many worked examples in the text, and a collection of codes available for download from the book s page at www.springer.com. This text is suitable for self-study by practicing scientists and engineers and as a final-year undergraduate course or at the graduate level.
Detailed mathematical models are increasingly being used by
companies to gain competitive advantage through such applications
as model-based process design, control and optimization. Thus,
building various types of high quality models for processing
systems has become a key activity in Process Engineering. This
activity involves the use of several methods and techniques
including model solution techniques, nonlinear systems
identification, model verification and validation, and optimal
design of experiments just to name a few. In turn, several issues
and open-ended problems arise within these methods, including, for
instance, use of higher-order information in establishing parameter
estimates, establishing metrics for model credibility, and
extending experiment design to the dynamic situation.
This book provides an overview of the current and emerging industrial applications of ionic liquids, covering the core processes, the practical implementation and technical challenges involved, and exploring potential future directions for research and development. The introductory chapter describes the unique physical and chemical properties of ionic liquids, and illustrates the vast potential for application of these materials across the industrial landscape. Following this, individual chapters written by leading figures from industry and academia address specific processes and products, such as the development of a new chloroaluminate ionic liquid as an alkylation catalyst and a new class of capillary gas chromatography (GC) columns with stationary phases based on ionic liquids. Over the past twenty years, ionic liquids have moved from being considered as mere academic curiosities to having genuine applications in fields as wide-ranging as biotechnology, biorefineries, catalysis, pharmaceuticals, renewable fuels, and sustainable energy. This book highlights several commercial products and processes that use or will soon be using ionic liquids.
Since the industrial revolution, chlorine remains an iconic molecule even though its production by the electrolysis of sodium chloride is extremely energy intensive. The rationale behind this book is to present useful and industrially relevant examples for alternatives to chlorine in synthesis. This multi-authored volume presents numerous contributions from an international spectrum of authors that demonstrate how to facilitate the development of industrially relevant and implementable breakthrough technologies. This volume will interest individuals working in organic synthesis in industry and academia who are working in Green Chemistry and Sustainable Technologies.
Guaranteeing a high system performance over a wide operating range
is an important issue surrounding the design of automatic control
systems with successively increasing complexity. As a key
technology in the search for a solution, advanced fault detection
and identification (FDI) is receiving considerable attention. This
book introduces basic model-based FDI schemes, advanced analysis
and design algorithms, and mathematical and control-theoretic
tools.
This book focuses on the assessment of different coal gasification technologies for the utilization of Russian coals with analyses of economically feasible process chains for preparation of marketable products from high-ash coals. The work presented is important in view of the general competitiveness that marks the future of coal in the world. As the cheapest form of fuel (in comparable terms) coal will undoubtedly be in demand resources in the world. The book consists of parts which include an overview about the major coal characteristics, detailed discussion of fundamental aspects of gasification technologies and gasifiers, an introduction into annex concepts, an overview about different technologies of syngas utilization, technical and economic assessment of several coal-to-liquid and coal-to-chemicals routes, and feasibility demonstration for selected process chains. This book is addressed to the management and engineers of Russian coal companies and scientific staff of Russian research institutions working in the field of coal utilization.
This book explores the use of recent advanced multiple stage conversion technologies. These applications combine conventional fluidised bed systems with new plasma technologies to efficiently generate different energy outputs from waste materials with minimum cleaning effort. Using a mix of modelling and experimental approaches, the author provides fundamental insights into how the key operating variables of the two-stage process may impact the final quality of syngas. This thesis serves as a useful reference guide on the modelling and design of single and multiple-stage systems for thermal waste treatment. Its extended section on plant configuration and operation of waste gasification plants identifies the main technical challenges, and is of use to researchers entering the field.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
This book covers all aspects of containment technology in depth and the latest developments in this exciting field are introduced. This book is a key publication to planning engineers, production managers and those interested in getting a picture of the different applications of the isolator technology. References on literature, laws, norms and guidelines will support the reader to become acquainted with the containment technology.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors. All chapters from Topics in Organometallic Chemistry are published OnlineFirst with an individual DOI. In references, Topics in Organometallic Chemistry is abbreviated as Top Organomet Chem and cited as a journal
Ion-exchange Technology I: Theory and Materials describes the theoretical principles of ion-exchange processes. More specifically, this volume focuses on the synthesis, characterization, and modelling of ion-exchange materials and their associated kinetics and equilibria. This title is a highly valuable source not only to postgraduate students and researchers but also to industrial R&D specialists in chemistry, chemical, and biochemical technology as well as to engineers and industrialists. |
You may like...
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,952
Discovery Miles 39 520
Synthesis and Chemistry of…
Don R. Baker, Joseph G. Fenyes, …
Hardcover
R2,104
Discovery Miles 21 040
Remediation of Hazardous Waste in the…
Clayton J. Clark, Angela Stephenson Lindner
Hardcover
R5,176
Discovery Miles 51 760
Nanotechnology - Fundamentals, Materials…
Vikas Mittal
Hardcover
Sustainable Fashion and Textile…
Hanna de la de la, Asa Ostlund
Hardcover
Ionic Liquids - From Knowledge to…
Natalia Plechkova, Robin Rogers, …
Hardcover
R3,332
Discovery Miles 33 320
|