![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
As a result of the advancements in algorithms and the huge increase in speed of computers over the past decade, electronic structure calculations have evolved into a valuable tool for characterizing surface species and for elucidating the pathways for their formation and reactivity. It is also now possible to calculate, including electric field effects, STM images for surface structures. To date the calculation of such images has been dominated by density functional methods, primarily because the computational cost of - curate wave-function based calculations using either realistic cluster or slab models would be prohibitive. DFT calculations have proven especially valuable for elucidating chemical processes on silicon and other semiconductor surfaces. However, it is also clear that some of the systems to which DFT methods have been applied have large non-dynamical correlation effects, which may not be properly handled by the current generation of Kohn-Sham-based density functionals. For example, our CASSCF calculations on the Si(001)/acetylene system reveal that at some geometries there is extensive 86 configuration mixing. This, in turn, could signal problems for DFT cal- lations on these systems. Some of these problem systems can be addressed using ONIOM or other "layering" methods, treating the primary region of interest with a CASMP2 or other multireference-based method, and treating the secondary region by a lower level of electronic structure theory or by use of a molecular mechanics method. ACKNOWLEDGEMENTS We wish to thank H. Jonsson, C. Sosa, D. Sorescu, P. Nachtigall, and T. -C."
This book provides insights into the development and usage of coal in chemical engineering. The reactivity of coal in processes such as pyrolysis, gasification, liquefaction, combustion and swelling is related to its structural properties. Using experimental findings and theoretical analysis, the book comprehensively answers three crucial issues that are fundamental to the optimization of coal chemical conversions: What is the structure of coal? How does the underlying structure determine the reactivity of different types of coal? How does the structure of coal alter during coal conversion? This book will be of interest to both individual readers and institutions involved in teaching and research into chemical engineering and energy conversion technologies. It is aimed at advanced- level undergraduate students. The text is suitable for readers with a basic knowledge of chemistry, such as first-year undergraduate general science students. Higher-level students with an in-depth understanding of the chemistry of coal will also benefit from the book. It will provide a useful reference resource for students and university-level teachers, as well as practicing engineers.
Reviews all known antifoam mechanisms, and discusses the appropriate practical approaches for solving foam control problems in a variety of industrial contexts. These range from crude oil production to detergent formulation.
Essentials of Radiation Heat Transfer focuses only on the essential topics required to gain an understanding of radiation heat transfer to enable the reader to master more challenging problems. The strength of the book lies in its elaborate presentation of the powerful radiosity-irradiation method and shows how this technique can be used to solve a variety of problems of radiation in enclosures made of one to any number of surfaces in both transparent and participating media. The book also introduces atmospheric radiation in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, by a better understanding of radiation. The author has included pedagogical features such as end-of-chapter exercises and worked examples with varying degrees of difficulty to augment learning and self-testing. The book has been written in an easy- to- follow conversational style to enhance reader engagement and learning outcomes. This book will be a useful guide for upper undergraduate and graduate students in the areas of mechanical engineering, aerospace engineering, atmospheric sciences, and energy sciences.
CONTENTS - PART I. ATOMS, MOLECULES AND CHEMICAL BONDING - I. Atom: Wave Nature and Configuration - II. Electron Clouds, Covalent and Ionic Radii - III. Molecular Orbitals - IV. Valence Bond Theory of Chemical Bonding - V. Hybridization - VI. Chemical Bonding and its Molecular Orbital Theory - VII. Coupling of Angular Momenta and Magnetic Moments - VIII. Transitional Elements - IX. Complexes, Ligands and Molecular Orbital Field Theory - PART II. NON-TRANSITIONAL ELEMENTS - X. Inert Gases of the Zero Group - Rare Elements of the Alkali Group - XI. Lithium - XII. Rubidium, Caesium and Francium - Rare Elements of the Alkaline Earth Group - XIII. Beryllium - XIV. Radium and Radon - Rare Elements of Boron-Aluminium Group - XV. Gallium - XVI. Indium - XVII. Thallium - Rare Elements of Carbon Group - XVIII. Germanium - Rare Elements of Oxygen-Sulphur Group - XIX. Selenium - XX. Tellurium and Polonium - XXI. Element 85, Alabamine or Astatine of Halogen Group - PART III. TRANSITIONAL ELEMENTS - XXII. Scandium - XXIII. Lathanide Series or Rare Earths - Rare Elements of the Titanium Sub-Group - XXIV. Titanium - XXV. Zirconium - XXVI. Hafnium - XXVII. Thorium - Rare Elements of the Vanadium Sub-Group - XXVIII. Vanadium - XXIX. Columbium or Niobium - XXX. Tantalum - Rare Elements of the Chromium Sub-Group - XXXI. Molybdenum - XXXII. Tungsten or Wolfram - XXXIII. Uranium - Rare Elements of the Manganese Sub-Group - XXXIV. Rhenium and Technetium - Platinum Metals - XXXV. Ruthenium - XXXVI. Rhodium - XXXVII. Palladium - XXX VIII. Osmium - XXXIX. Iridium - XL. Platinum - XLI. Actinium and Protoactinium - XLII. Trans-Uranium Elements - Rare Earth Homologues in the Actinide Series - Index -
Green Chemistry is an inventive science based on fundamental research towards the development of new sustainable chemical processes. There is a great need to create a new type of chemistry focused on a new production system, in order to prepare the younger generation to get a greener future. The globalization pushes the chemistry community to adopt ethical issues. In this prospect Green Chemistry can achieve the approval of the society by teaching students to be confident in science and at the same time by convincing people that it is possible to attain technological development with respect and care for the environment we live in. This is why it is of foremost importance that education and fundamental research remain strictly connected, so that democracy and development can grow and progress side by side. This book has been prepared to extend the knowledge of Green Chemistry not disregarding, however, the industrial interest. It is the result of the effort to put together and share the expertise of leading practitioners in the field of Green Chemistry. The Interuniversity Consortium 'Chemistry for the Environment' is a non-profit organisation established in 1993 in Italy. At present it includes 31 member universities and 80 research units.
The porous structure of molecular sieves, combined with their chemical composition, makes them uniquely suitable for use as catalysts or catalytic supports. As such, the materials are used in a wide range of chemical reactions, and as components of formulated products. The shape selectivity of the materials further enhances their chemical usefulness, and exploitation of their unique absorption properties holds the key to improving their catalytic properties. To that end, great efforts are being made to find new of different molecular sieves, with altered or tailored structures or chemical composition. The synthesis and characterisation of molecular sieve materials is a considerable challenge, testing both the chemist's understanding and practical skills. In a thorough overhaul of the very successful first edition of this book, the author guides the reader in the basics of sieve structure, synthesis and characterisation, and points the way to the development of new or improved sieve materials. By covering both the principles and practical aspects of sieve synthesis and characterisation, professional chemists, particularly those involved in industrial research and development, will find this book an essential guide to the current state of the art, and a useful starting point in their own research. Academic chemists, including postgraduate students, will find this book an invaluable guide to this exciting and important area of chemistry.
This book presents comprehensive information on the relay auto-tuning method for unstable systems in process control industries, and introduces a new, refined Ziegler-Nichols method for designing controllers for unstable systems. The relay auto-tuning method is intended to assist graduate students in chemical, electrical, electronics and instrumentation engineering who are engaged in advanced process control. The book's main focus is on developing a controller tuning method for scalar and multivariable systems, particularly for unstable processes. It proposes a much simpler technique, avoiding the shortcomings of the popular relay-tuning method. The effects of higher-order harmonics are incorporated, owing to the shape of output waveforms. In turn, the book demonstrates the applicability and effectiveness of the Ziegler-Nichols method through simulations on a number of linear and non-linear unstable systems, confirming that it delivers better performance and robust stability in the presence of uncertainty. The proposed method can also be easily implemented across industries with the help of various auto-tuners available on the market. Offering a professional and modern perspective on profitably and efficiently automating controller tuning, the book will be of interest to graduate students, researchers, and industry professionals alike.
CONTENTS - INTRODUCTION - 1. BASIC CONSIDERATIONS - Solutions-Suspensions-Emulsions-Surface Activity - 2. PROPERTIES OF EMULSIONS - Particle size and arrangement ; Rheology ; Micelle Theory ; Stability and Interfacial Phenomena ; Causes of Unstable Emulsions - 3. INGREDIENTS AND ADDITIVES - Surfactants-Emulsifying Agents ; Wetting Agents ; Foamers ; Protective Colloids ; Preservatives - 4. ANALYSIS AND TESTING OF EMULSIONS - Type of Emulsion ; Density ; Viscosity ; Surface Tension ; Particle Size ; Water ; PH-Color OdorCorrosion ; Stability ; Performance ; Analytical Procedures ; ASTM Specifications - 5. TECHNIQUES OF EMULSIFICATION - English Method-Continental Method - 6. EMULSIFYING EQUIPMENT - Low-Shear-High-Shear-Rotor-Stator ; Pressurized Fluid ; Vibrational Devices ; Laboratory Equipment - 7. EMULSION PLANTS AND PRODUCTION MACHINERY - Over-all Plan ; Modes of Operation ; Power Requirements ; Mixing Tanks ; Pumps ; Conveyors ; Materials of Construction ; Instrumentation ; Packaging - 8. SELECTED TOPICS - Formulation of Emulsions-HLB-Biodegradability - Regulations - BIBLIOGRAPHY - LIST OF EMULSIFYING AGENTS - SUPPLIERS OF EMULSIFYING AGENTS - GLOSSARY - INDEX - Introduction - Emulsions, though not new, are finding new and wider applications daily. One of the first references to emulsions was recorded by Galen (131-c.201), the Greek physician. Beginning with that early reference to the emulsifying power of beeswax, the art and science of emulsification has flourished. Emulsions are prepared and used for a variety of reasons. As oil paint cannot be applied to a damp surface, it is emulsified in water. The oil paint, then, in the form of an emulsion, can be applied to a damp surface. Therefore, the emulsion can change the application characteristics of a material. Water is a desirable, cheap diluent, and an emulsion is an easy method of using water to dilute materials that are not soluble in water. In addition, the fire hazard of flammable water-insoluble materials can be decreased through emulsification. The odor and taste of water-insoluble materials can be reduced by the use of an emulsion. Cod-liver oil, for example, loses much of its fishy, oily taste when it is emulsified. The kinetics of many reactions are enhanced through the use of emulsion polymerization techniques. On the other hand, emulsions are difficult to manufacture. A small deviation in temperature or mixing speed or small amounts of impurities can prevent the formation of a stable emulsion. Emulsions are sensitive in varying degrees to heat, cold, and age. The production of good, stable emulsions, therefore, is the combination of science and art. It is the purpose of this book to describe the art and technique of emulsification.
This book focuses on structural characterisation techniques for porous materials. Covering a range of techniques, including gas sorption, mercury porosimetry, thermoporometry, NMR and imaging methods, this practical guide presents the basic theory behind each characterisation technique, and discusses the practicalities of the experimental and data analysis approaches needed for complex industrial samples. The book shows readers how to approach characterising a particular sort of material for the first time and then how to develop a strategy for more in-depth analysis. It also demonstrates how to determine the best techniques for solving particular problems, and describes methods of obtaining the required information, as well as the limitations of various methods. It particularly highlights a scientific approach involving parameter validation and simple acquisition. Featuring examples taken from case studies of real-world industrial materials, this book is intended for industrial practitioners and researchers. It provides a manual of potential techniques and answers questions concerning porous materials that arise in areas such as the catalyst industry, the oil and gas sector, batteries, fuel cells, tissue engineering scaffolds and drug delivery devices.
A growing proportion of the world's population is dependent on Seawater Desalination as a source of fresh water for both potable and civil use. One of the main drawbacks of conventional desalination technologies is the substantial energy requirement, which is facing cost increases in the global energy market. "Seawater Desalination" presents an overview of conventional and non-conventional technologies, with a particular focus on the coupling of renewable energies with desalination processes. The first section of this book presents, in a technical but reader-friendly way, an overview of currently-used desalination processes, from thermal to membrane processes, highlighting the relevant technical features, advantages and disadvantages, and development potential. It also gives a rapid insight into the economic aspects of fresh water production from seawater. The second section of the book presents novel processes which use Renewable Energies for fresh water production. From the first solar still evaporators, which artificially reproduced the natural cycle of water, technology has progressed to develop complex systems to harness energy from the sun, wind, tides, waves, etc. and then to use this energy to power conventional or novel desalination processes. Most of these processes are still at a preliminary stage of development, but some are already being cited as examples in remote areas, where they are proving to be valuable in solving the problems of water scarcity. A rapid growth in these technologies is foreseen in the coming years. This book provides a unique foundation, within the context of present and future sustainability, for professionals, technicians, managers, and private and public institutions operating in the area of fresh water supply.
Over the last 15 years, there has been renewed interest in supercritical fluids owing to their unique properties and relatively low environmental impact. Greatest attention has been given to the extraction and separation of organic compounds. Supercritical fluids have also been successfully used for particle production, as reaction media, and for the destruction of toxic waste. Supercritical carbon dioxide has been the most widely used supercritical fluid, mainly because it is cheap, relatively nontoxic, and has convenient critical values. Supercritical fluids have also been used on analytical and preparative scales for many biological and other applications. Many papers have been published on the use of supercritical fluids. However, few have acted as a detailed instruction manual for those wanting to use the techniques for the first time. We anticipate that this Methods in Biotechnology volume, Supercritical Fluid Methods and Protocols will s- isfy the need for such a book. Every chapter has been written by experienced workers and should, if closely followed, enable workers with some or no previous experience of supercritical fluids to conduct experiments successfully at the first attempt.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science.The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.Review articles for the individual volumes are invited by the volume editors.Readership: research chemists at universities or in industry, graduate students
Industrial radiography is a well-established non-destructive testing (NDT) method in which the basic principles were established many years ago. However, during 1993-95 the European Standards Organisa tion (CEN) commenced drafting many new standards on NDT including radiographic methods, and when completed these will replace national standards in all the EC member countries. In some cases these standards vary significantly from those in use in the UK at present. These CEN standards are accepted by majority, not unanimous voting, so they will become mandatory even in countries which vote against them. As most are likely to be legal by the time this second edition is published, they are described in the appropriate places in the text. The most important new technical development is the greater use of computers in radiology. In the first edition, computerized tomography was only briefly mentioned at the end of Chapter 11, as it was then largely a medical method with only a few equipments having found a place in industrial use. The method depends on a complex computer program and a large data store. Industrial equipments are now being built, although their spread into industry has been slow. Computer data storage is also being used for radiographic data. Small computers can now store all the data produced by scanning a radiographic film with a small light-spot, and various programs can be applied to these data."
This volume chronicles the proceedings of the 8th International Symposium on Surfactants in Solution (SIS) held in Gainesville, FL, June 10-15, 1990. This series of symposia have been smoothly running since 1976, but the appellation "Surfactants in Solution" was used for the first time in 1982 in Lund. Since then our logo "SIS" has become very familiar to everyone involved in surfactants. In Lund the meeting was billed as the Fourth International Symposium on Surfactants in Solution. Earlier three events were held under different rubrics, but proceedings of all these symposia, except the 7th SIS held in Ottawa in 1988, have been properly documented. As a matter of fact so far 10 volumes have appeared under the title "Surfactants in Solution". 1,2,3 The program for the 9th SIS was very comprehensive and many ramifications of surfactants were covered, and it was a veritable international event. It contained a total of 384 papers by 869 authors from practically every corner of our planet. Just the sheer number of papers is a testimonial to the high tempo of research and tremendous interest in this wonderful class of materials. As in the past, there were plenary lectures (5), invited talks (37), oral presentations (195) and poster presentations (147). The plenary lectures were given by Prof. J. Th. G. Overbeek, Prof. C. A. Bunton, Prof. H. Ti Tien and Dr. J. Swalen. The lecture by Prof. Overbeek, the doyen of surface and colloid science, was a real treat.
This volume contains an archival record of the NATO Advanced Institute on Microscale Heat Transfer - Fundamental and Applications in Biological and Microelectromechanical Systems held in Cesme - Izmir, Turkey, July 18-30, 2004. The ASIs are intended to be high-level teaching activity in scientific and technical areas of current concern. In this volume, the reader may find interesting chapters and various Microscale Heat Transfer Fundamental and Applications. The growing use of electronics, in both military and civilian applications has led to the widespread recognition for need of thermal packaging and management. The use of higher densities and frequencies in microelectronic circuits for computers are increasing day by day. They require effective cooling due to heat generated that is to be dissipated from a relatively low surface area. Hence, the development of efficient cooling techniques for integrated circuit chips is one of the important contemporary applications of Microscale Heat Transfer which has received much attention for cooling of high power electronics and applications in biomechanical and aerospace industries. Microelectromechanical systems are subject of increasing active research in a widening field of discipline. These topics and others are the main themeof this Institute."
This book reports on multidisciplinary research focusing on the analysis, synthesis and design of bionanomaterials. It merges the biophysicists', the biochemists' and bioengineers' perspectives, covering the study of the basic properties of materials and their interaction with biological systems, the development of new devices for medical purposes such as implantable systems, and new algorithms and methods for modeling the mechanical, physical or biological properties of biomaterials. The different chapters, which are based on selected contributions presented at the second edition of BIONAM, held on October 4-7, 2016, in Salerno, Italy, cover both basic and applied research. This includes novel synthetic strategies for nanomaterials, as well as the implementation of bio- and smart materials for pharmacological and medical purposes (e.g. drug delivery, implantable systems), environmental applications, and many others. The book provides a broad audience of academic and professionals with a comprehensive, timely snapshot of the field of biomaterials. Besides offering a set of innovative theories together with the necessary practical tools for their implementation, it also highlights current challenges in the field, thus fostering new discussions and possible future collaborations between groups with different backgrounds.
Concern for the environment has become one of the big issues in modern society, and one of the chief concerns is the environmental impact of modern industrial production. A particularly sensitive issue is the possibility of accidents in industries where there may be severe consequences for people, property and the environment. At one time the nuclear industry was seen as the most likely to be the cause of significant environmental damage, but after the occurrence of several major accidents such as Seveso, Flixborough and Bhopal, that concern extends to much of the chemicals industry. Pressure from society, reflected by strong legislation, coupled with a greater understanding of the impact that chemical processing operations can have, has led to the adoption of higher profile safety and environmental management programs within the chemical industry. Under these programmes existing and new processes are rigorously examined to determine the possible causes and consequences of failure, and the results used to improve the process to make failure less likely. Any process audit, aimed at improving safety or lessening the environmental impact, cannot be carried out using intuition or experience alone, so the discipline of risk analysis has grown as a collection of tools and methods which can be utilized to give a quantitative assessment of the risks involved in operating any given process. In this new book the authors present risk analysis and reduction in a clear and unified way, emphasizing the various different methods which can be used together in a global approach to risk analysis in the chemical process industries. Originally conceived as a text book for graduate level courses in chemical engineering, the clear presentation and thorough coverage will ensure that anyone involved in risk assessment, environmental impact assessment or safety planning will find this book an invaluable source of reference.
This book presents specific key natural and artificial systems that are promising biocatalysts in the areas of health, agriculture, environment and energy. It provides a comprehensive account of the state of the art of these systems and outlines the significant progress made in the last decade using these systems to develop innovative, sustainable and environmentally friendly solutions. Chapters from expert contributors explore how natural enzymes and artificial systems tackle specific targets such as: climate change, carbon footprint and economy and carbon dioxide utilisation; nitrogen footprint and fixation and nitrous oxide mitigation; hydrogen production, fuel cells and energy from bacteria; biomass transformation and production of added-value compounds, as well as biosensors development. This book provides an important and inspiring account for the designing of new natural and artificial systems with enhanced properties, and it appeals not only to students and researchers working in the fields of energy, health, food and environment, but also to a wider audience of educated readers that are interested in these up-to-date and exciting subjects.Chapter "Carbon Dioxide Utilisation-The Formate Route" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Automated Measurement and Monitoring of Bioprocesses: Key Elements of the M3C Strategy, by Bernhard Sonnleitner Automatic Control of Bioprocesses, by Marc Stanke, Bernd Hitzmann An Advanced Monitoring Platform for Rational Design of Recombinant Processes, by G. Striedner, K. Bayer Modelling Approaches for Bio-Manufacturing Operations, by Sunil Chhatre Extreme Scale-Down Approaches for Rapid Chromatography Column Design and Scale-Up During Bioprocess Development, by Sunil Chhatre Applying Mechanistic Models in Bioprocess Development, by Rita Lencastre Fernandes, Vijaya Krishna Bodla, Magnus Carlquist, Anna-Lena Heins, Anna Eliasson Lantz, Gurkan Sin and Krist V. Gernaey Multivariate Data Analysis for Advancing the Interpretation of Bioprocess Measurement and Monitoring Data, by Jarka Glassey Design of Pathway-Level Bioprocess Monitoring and Control Strategies Supported by Metabolic Networks, by Ines A. Isidro, Ana R. Ferreira, Joao J. Clemente, Antonio E. Cunha, Joao M. L. Dias, Rui Oliveira Knowledge Management and Process Monitoring of Pharmaceutical Processes in the Quality by Design Paradigm, by Anurag S Rathore, Anshuman Bansal, Jaspinder Hans The Choice of Suitable Online Analytical Techniques and Data Processing for Monitoring of Bioprocesses, by Ian Marison, Siobhan Hennessy, Roisin Foley, Moira Schuler, Senthilkumar Sivaprakasam, Brian Freeland
This book presents a large number of organic reactions performed under green conditions, which were earlier performed using anhydrous conditions and various volatile organic solvents. The conditions used involve green solvents like water, super critical carbon dioxide, ionic liquids, polymer-supported reagents, polyethylene glycol and perfluorous liquids. A number of reactions have been conducted in solid state without using any solvent. Most of the reactions have been conducted under microwave irradiations and sonication. In large number of reactions, catalysts like phase transfer catalysts, crown ethers and biocatalysts have been used. Providing the protocols that every laboratory should adopt, this book elaborates the principles of green chemistry and discusses the planning and preparations required to convert to green laboratory techniques. It includes applications relevant to practicing researchers, students and environmental chemists. This book is useful for students (graduate and postgraduate), researchers and industry professionals in the area of chemical engineering, chemistry and allied fields.
This book provides an analysis of the reaction mechanisms relevant to a number of processes in which CO2 is converted into valuable products. Several different processes are considered that convert CO2 either in specialty chemicals or in bulk products or fuels. For each reaction, the mechanism is discussed and the assessed steps besides the dark sites of the reaction pathway are highlighted. From the insertion of CO2 into E-X bonds to the reduction of CO2 to CO or other C1 molecules or else to C2 or Cn molecules, the reactions are analysed in order to highlight the known and obscure reaction steps. Besides well known reaction mechanisms and energy profiles, several lesser known situations are discussed. Advancing knowledge of the latter would help to develop efficient routes for the conversion of CO2 into valuable products useful either in the chemical or in the energy industry. The content of this book is quite different from other books reporting the use of CO2. On account of its clear presentation, "Reaction Mechanisms in Carbon Dioxide Conversion" targets in particular researchers, teachers and PhD students.
This book summarizes the author's findings on the functional principle of flotation reagents, gathered over the past few decades. The fundamentals of and approaches common to surface chemistry are applied to study the reagents' structure and performance, as well as their interaction with minerals. In particular, the book establishes the theoretical criteria for collector performance. It also includes the quantum chemistry parameters, steric configuration, HOMO and LUMO surface of various reagents. The book offers a valuable resource for all university graduate students, researchers and R&D engineers in minerals processing and extractive metallurgy who wish to explore innovative reagents and technologies that lead to more energy efficient and environmentally sustainable solutions.
An understanding of the processes involved in the basic and applied physics and chemistry of the interaction of plasmas with materials is vital to the evolution of technologies such as those relevant to microelectronics, fusion and space. The subjects dealt with in the book include: the physics and chemistry of plasmas, plasma diagnostics, physical sputtering and chemical etching, plasma assisted deposition of thin films, ion and electron bombardment, and plasma processing of inorganic and polymeric materials. The book represents a concentration of a substantial amount of knowledge acquired in this area - knowledge which was hitherto widely scattered throughout the literature - and thus establishes a baseline reference work for both established and tyro research workers.
In the past decades, the scan rate range of calorimeters has been extended tremendously at the high end, from approximately 10 up to 10 000 000 DegreesC/s and more. The combination of various calorimeters and the newly-developed Fast Scanning Calorimeters (FSC) now span 11 orders of magnitude, by which many processes can be mimicked according to the time scale(s) of chemical and physical transitions occurring during cooling, heating and isothermal stays in case heat is exchanged. This not only opens new areas of research on polymers, metals, pharmaceuticals and all kinds of substances with respect to glass transition, crystallization and melting phenomena, it also enables in-depth study of metastability and reorganization of samples on an 1 to 1000 ng scale. In addition, FSC will become a crucial tool for understanding and optimization of processing methods at high speeds like injection molding. The book resembles the state-of-the art in Thermal Analysis & Calorimetry and is an excellent starting point for both experts and newcomers in the field. |
![]() ![]() You may like...
Enterprise Resource Planning and…
Carlo Caserio, Sara Trucco
Hardcover
R1,521
Discovery Miles 15 210
Network+ Guide to Networks
Jill West, Jean Andrews, …
Paperback
Networked Communities - Strategies for…
Sylvie Albert, Don Flournoy, …
Hardcover
R4,522
Discovery Miles 45 220
Mass Customization for Personalized…
Constantinos Mourlas, Panagiotis Germanakos
Hardcover
R4,953
Discovery Miles 49 530
|