Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
The tracer method was first introduced to measure the actual flow of fluid in a vessel, and then to develop a suitable model to represent this flow. Such models are used to follow the flow of fluid in chemical reactors and other process units, in rivers and streams, and through soils and porous structures. Also, in medicine they are used to study the flow of chemicals, harmful or not, in the blood streams of animals and man. Tracer Technology, written by Octave Levenspiel, shows how we use tracers to follow the flow of fluids and then we develop a variety of models to represent these flows. This activity is called tracer technology.
Color is a visible technology that invisibly connects so many puzzling aspects of modern Western consumer societies-research and development, making and selling, predicting fashion trends, and more. Building on Regina Lee Blaszczyk's go-to history of the "color revolution" in the United States, this book explores further transatlantic and multidisciplinary dimensions of the topic. Covering history from the mid nineteenth century into the immediate past, it examines the relationship between color, commerce, and consumer societies in unfamiliar settings and in the company of new kinds of experts. Readers will learn about the early dye industry, the dynamic nomenclature for color, and efforts to standardize, understand, and educate the public about color. Readers will also encounter early food coloring, new consumer goods, technical and business innovations in print and on the silver screen, the interrelationship between gender and color, and color forecasting in the fashion industry.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
The role of theory in science was formulated very brilliantly by Max Planck: Experimenters are the striking force of science. The experiment is a question which science puts to nature. The measurement is the registration of nature's answer. But before the question is put to nature, it must be formulated. Before the measurement result is used, itmust be explained, i.e., the answer must be understood correctly. These two problems are obligations of the theoreticians. Chemical engineering is an experimental science, but theory permits us to formulate correct experimental conditions and to understand correctly the exp- imental results. The theoretical methods of chemical engineering for modeling and simulation of industrial processes are surveyed in this book. Theoretical chemical engineering solves the problems that spring up from the necessity for a quantitative description of the processes in the chemical industry. They are quite different at the different stages of the quantitative description, i.e., a wide circle of theoretical methods are required for their solutions. Modeling and simulation are a united approach to obtain a quantitative description of the processes and systems in chemical engineering and chemical technology, which is necessary to clarify the process mechanism or for optimal process design, process control, and plant renovation. Modeling is the creation of the mathematical model, i.e., construction of the mathematical description (on the basis of the process mechanism), calculation of the model parameters (using experimental data), and statistical analysis of the model adequacy.
This book covers all major areas of operation, pollution control, safety, modernization, diversification, and resource management for cost control in the industrial production of chemicals. The author details the importance of obtaining the right type of raw materials and equipment for maximum plant efficiency and discusses revival of plants that have been idle for long periods. He also presents important issues concerning product quality, energy recovery, safety, pollution control and improving profitability by proper management of resources. The book is ideal for shop floor engineers, middle level management, and owners of small- and medium-scale facilities in many countries as it serves as a guide for keeping the plant operations running in adverse situations, for reducing energy consumption; improving profitability, resource allocation, and workforce planning.
Polyvinyl chloride (PVC) is one of the most versatile and widely used polymers, with applications as diverse as doors and window frames, flooring, piping, electric wire insulation, toys, food packaging and car interiors. In this book, George Wypych has brought together in one place the core data and reference information needed by PVC manufacturers, processors, and users: Polymer properties and data for material selection Reference data on the 23 groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics required by the end-user. A comprehensive collection of 500 formulations compiled from recent patents, journal articles, and information from suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most important parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. Data on PVC and its products: general data and nomenclature,
chemical composition and properties, physical properties,
mechanical properties, health and safety, environmental
information, use and application information. Essential reference data for scientists and engineers involved in the design and production of PVC products, and their applications across a range of sectors such as construction and packaging Includes over 500 formulations: a unique data set
Evolving technologies in mass production have led to the development of advanced techniques in the field of manufacturing. These technologies can quickly and effectively respond to various market changes, necessitating processes that focus on small batches of multiple products rather than large, single-product lines. Formal Methods in Manufacturing Systems: Recent Advances explores this shifting paradigm through an investigation of contemporary manufacturing techniques and formal methodologies that strive to solve a variety of issues arising from a market environment that increasingly favors flexible systems over traditional ones. This book will be of particular use to industrial engineers and students of the field who require a detailed understanding of current trends and developments in manufacturing tools. This book is part of the Advances in Civil and Industrial Engineering series collection.
As the availability of fossils fuels becomes more limited, the negative impact of their consumption becomes an increasingly relevant factor in our choices with regards to primary energy sources. The exponentially increasing demand for energy is reflected in the mass generation of by-products and waste flows which characterize current society's development and use of fossil sources. The potential for recoverable material and energy in these ever-increasing refuse flows is huge, even after the separation of hazardous constituent elements, allowing safe and sustainable further exploitation of an otherwise 'wasted' resource. Fuel Cells in the Waste-to-Energy Chain explores the concept of waste-to-energy through a 5 step process which reflects the stages during the transformation of refuse flows to a valuable commodity such as clean energy. By providing selected, integrated alternatives to the current centralized, wasteful, fossil-fuel based infrastructure, Fuel Cells in the Waste-to-Energy Chain explores how the concept of waste-to-energy can be constructed and developed into a realistic solution. The entire spectrum of current and future energy problems is illuminated through the explanation of the operational, integration and marketing implications of high efficiency technological solutions using the real context of developed regions such as Europe. Up-to-date reviews are provided on the status of technology and demonstration, implementation and marketing perspectives. The detailed technological information and insight gathered from over twenty years of experience in the field makes Fuel Cells in the Waste-to-Energy Chain a valuable resource for all engineers and researchers in the fields of energy supply systems and waste conversion, as well as providing a key reference for discussions by policy makers, marketing experts and industry developers working in energy supply and waste management.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students.
I: Perfumery as An Art.- 1: The Art of Perfumery.- II: Perfumery as A Topic in Life Sciences.- 2: Odours and Perfumes as a System of Signs.- 3: Semiochemicals: Mevalogenins in Systems of Chemical Communication.- 4: Origin of Natural Odorants.- 5: A Consideration of Some Psychological and Physiological Mechanisms of Odor Perception.- III: Trapping and Measuring of Odours.- 6: The Measuring of Odors.- 7: Trapping, Investigation and Reconstitution of Flower Scents.- IV: Classification of Odours.- 8: Empirical Classification of Odours.- 9: Chemical Classification and Structure-Odour Relationships.- V: Compository Techniques and Application Segments.- 10: Creative Perfumery: Composition Techniques.- 11: Support Materials for Odorant Mixtures.- 12: Perfumery Applications: Functional Products.- 13: The Impact of Market Research.- VI: Production of Perfumes.- 14: The Chemistry of Synthetic Raw Materials Production.- 15: Compounding.- 16: The Toxicology and Safety of Fragrances.- 17: The Fragrance Industry in a Changing World.- VII: Topics in Perfumery Research.- 18: Receptors: Current Status and Future Directions.- 19: Natural Products.- 20: Synthetic Products.- Outlook.- List of Contributors.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics in pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.
This book reviews the recent advances in hydrothermal conversion of biomass into chemicals and fuels, and consists of 15 chapters. It introduces the properties of high-temperature water, the merits of hydrothermal conversion of biomass, and some novel hydrothermal conversion processes, mainly including hydrothermal production of value-added products, hydrothermal gasification, hydrothermal liquefaction and hydrothermal carbonization. This book introduces a new concept for counteracting the imbalance in the carbon cycle, which is caused by the rapid consumption of fossil fuels in anthropogenic activities in combination with the slow formation of fossil fuels. Accordingly, the book is useful in conveying a fundamental understanding of hydrothermal conversion of biomass in the carbon cycle so that a contribution can be made to achieving sustainable energy and environment. It is also interesting to a wide readership in various fields including chemical, geologic and environmental science and engineering. Fangming Jin is a Distinguished Professor at the School of Environmental Science & Engineering, Shanghai Jiao Tong University, China
In recent years the use of liquid—liquid extraction equipment has attracted widespread interest from all major chemical engineering, petroleum and pharmaceutical companies as well as university-based scientists and engineers. Liquid—Liquid Extraction Equipment presents :
The Role of Metals and Ligands in Organic Hydroformylation, by Luca Gonsalvi, Antonella Guerriero, Eric Monflier, Frederic Hapiot, Maurizio Peruzzini. Hydroformylation in Aqueous Biphasic Media Assisted by Molecular Receptors, by Frederic Hapiot, Herve Bricout, Sebastien Tilloy, Eric Monflier. Asymmetric Hydroformylation, by Bernabe F. Perandones, Cyril Godard, Carmen Claver. Domino Reactions Triggered by Hydroformylation, by Elena Petricci, Elena Cini. Rhodium-Catalyzed Hydroformylation in Fused Azapolycycles Synthesis, by Roberta Settambolo. Hydroformylation in Natural Product Synthesis, by Roderick W. Bates, Sivarajan Kasinathan."
Membrane techniques are an excellent alternative to traditional methods of purification and separation. This book covers issues related to the most recent developments in the field of membrane techniques. The latest scientific research and their potential applications in industrial solutions are described. In addition, currents trends in food & beverages technologies, and biomedicine are discussed. Moreover, the book emphasizes recent advancements in design of membrane systems, used either for separation or creation of mixtures, from the perspective of industry 4.0 and data management.
The relay feedback test (RFT) has become a popular and efficient in process identification and automatic controller tuning. "Non-parametric Tuning of PID Controllers" couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text. Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) method. Industrial loop tuning for distributed control systems using modified RFT is also described. Many of the problems of tuning rules optimization and identification with modified RFT are accompanied by MATLAB(r) code, downloadable from http: //extras.springer.com/978-1-4471-4464-9 to allow the reader to duplicate the results. "Non-parametric Tuning of PID Controllers" is written for readers with previous knowledge of linear control and will be of interest to academic control researchers and graduate students and to practitioners working in a variety of chemical- mechanical- and process-engineering-related industries.
This book is written for scientists involved in the calibration of viscometers. A detailed description for stepping up procedures to establish the viscosity scale and obtaining sets of master viscometers is given in the book. Uncertainty considerations for standard oils of known viscosity are presented. The modern viscometers based on principles oftuning fork, ultrasonic, PZT, plate waves, Love waves, micro-cantilever and vibration of optical fiber are discussed to inspire the reader to further research and to generate improved versions. The primary standard for viscosity is pure water. Measurements of its viscosity with accuracy/uncertainty achieved are described. The principles of rotational and oscillation viscometers are explained to enhance the knowledge in calibration work. Devices used for specific materials and viscosity in non SI units are discussed with respect to the need to correlate viscosity values obtained by various devices. The description of commercial viscometers meets the needs of the user."
Microdroplet technology has recently emerged to provide new and diverse applications via microfluidic functionality, especially in various areas of biology and chemistry. This book, then, gives an overview of the principle components and wide-ranging applications for state-of-the-art of droplet-basedmicrofluidics. Chapter authors are internationally-leading researchers from chemistry, biology, physics and engineering that present various key aspects of micrdroplet technology -- fundamental flow physics, methodology and components for flow control, applications in biology and chemistry, and a discussion of future perspectives. This book acts as a reference for academics, post-graduate students, and researcher wishing to deepen their understand of microfluidics and introduce optimal design and operation of new droplet-based microfluidic devices for more comprehensive analyte assessments."
New and Future Developments in Catalysis is a package of seven books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes. The various sources of environmental pollution are the theme of this volume. The volume lists all current environmentally friendly catalytic chemical processes used for environmental remediation and critically compares their economic viability. Offers in-depth coverage of all catalytic topics of current interest and outlines future challenges and research areasA clear and visual description of all parameters and conditions, enabling the reader to draw conclusions for a particular caseOutlines the catalytic processes applicable to energy generation and design of green processes
The third edition of Engineering Flow and Heat Exchange is the most practical textbook available on the design of heat transfer and equipment. This book is an excellent introduction to real-world applications for advanced undergraduates and an indispensable reference for professionals. The book includes comprehensive chapters on the different types and classifications of fluids, how to analyze fluids, and where a particular fluid fits into a broader picture. This book includes various a wide variety of problems and solutions - some whimsical and others directly from industrial applications. Numerous practical examples of heat transfer Different from other introductory books on fluids Clearly written, simple to understand, written for students to absorb material quickly Discusses non-Newtonian as well as Newtonian fluids Covers the entire field concisely Solutions manual with worked examples and solutions provided
This book highlights the sustainability aspects of additive manufacturing (AM) in two separate volumes. It describes the details of this technology and its implications on the entire product life cycle sustainability, as well as embedded carbon and the further research needed to move this technology towards sustainable, mainstream production. Sustainability is not new for any area of industry, including additive manufacturing, and there are currently a number of ongoing research projects, both in industry and in academic institutions, that are investigating sustainability, embedded carbon and research activities which would need to be done in the future to move this technology towards sustainable mainstream production.
Research for the development of more efficient photocatalysts has experienced an almost exponential growth since its popularization in early 1970 s. Despite the advantages of the widely used TiO2, the yield of the conversion of sun power into chemical energy that can be achieved with this material is limited" "prompting the research and development of a number of structural, morphological and chemical modifications of TiO2, as well as a number of novel photocatalysts with very different composition." Design of Advanced Photocatalytic Materials for Energy and Environmental Applications" provides a systematic account of the current understanding of the relationships between the physicochemical properties of the catalysts and photoactivity. The already long list of photocatalysts phases and their modifications is increasing day by day. By approaching this field from a material sciences angle, an integrated view allows readers to consider the diversity of photocatalysts globally and in connection with other technologies. "Design of Advanced Photocatalytic Materials for Energy and Environmental Applications" provides a valuable road-map, outlining the common principles lying behind the diversity of materials, but also delimiting the imprecise border between the contrasted results and the most speculative studies. This broad approach makes it ideal for specialist but also for engineers, researchers and students in related fields.
Because we are living in an era of Green Science and Technology, developments in the field of bio- and nano- polymer composite materials for advanced structural and medical applications is a rapidly emerging area and the subject of scientific attention. In light of the continuously deteriorating environmental conditions, researchers all over the world have focused an enormous amount of scientific research towards bio-based materials because of their cost effectiveness, eco-friendliness and renewability. This handbook deals with cellulose fibers and nano-fibers and covers the latest advances in bio- and nano- polymer composite materials. This rapidly expanding field is generating many exciting new materials with novel properties and promises to yield advanced applications in diverse fields. This book reviews vital issues and topics and will be of interest to academicians, research scholars, polymer engineers and researchers in industries working in the subject area. It will also be a valuable resource for undergraduate and postgraduate students at institutes of plastic engineering and other technical institutes.
Weingart's classic book on fireworks covering the author's work and experiments from 1890-1935. In case laminate hardback edition.
Integral processes with dead time are frequently encountered in the process industry; typical examples include supply chains, level control and batch distillation columns. Special attention must be paid to their control because they lack asymptotic stability (they are not self-regulating) and because of their delays. As a result, many techniques have been devised to cope with these hurdles both in the context of single-degree-of-freedom (proportional-integral-differential (PID)) and two-degree-of-freedom control schemes. Control of Integral Processes with Dead Time provides a unified and coherent review of the various approaches devised for the control of integral processes, addressing the problem from different standpoints. In particular, the book treats the following topics: how to tune a PID controller and assess its performance; how to design a two-degree-of-freedom control scheme in order to deal with both the set-point following and load disturbance rejection tasks; how to modify the basic Smith predictor control scheme in order to cope with the presence of an integrator in the process; and how to address the presence of large process dead times. The methods are presented sequentially, highlighting the evolution of their rationale and implementation and thus clearly characterising them from both academic and industrial perspectives. Control of Integral Processes with Dead Time will serve academic researchers in systems with dead time both as a reference and stimulus for new ideas for further work and will help industry-based control and process engineers to solve their control problems using the most suitable technique and achieving the best cost: benefit ratio." |
You may like...
Synthesis, Properties and Applications…
Stefania M S Privitera
Hardcover
R1,339
Discovery Miles 13 390
Ionic Liquids - From Knowledge to…
Natalia Plechkova, Robin Rogers, …
Hardcover
R3,332
Discovery Miles 33 320
Medicinal and Natural Product Chemistry
Allegra Smith
Hardcover
Recent Advances in Disinfection…
Tanju Karanfil, Bill Mitch, …
Hardcover
R6,031
Discovery Miles 60 310
Hybrid Composites - Processing…
Kaushik Kumar, B Sridhar Babu
Hardcover
R5,510
Discovery Miles 55 100
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,587
Discovery Miles 25 870
|