![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
This excellent book systematically identifies the issues surrounding the effective linking of project management techniques and engineering applications. It is not a technical manual, nor is it procedure--led. Instead, it encourages creative learning of project engineering methodology that can be applied and modified in different situations. In short, it offers a distillation of practical 'on--the job' experience to help project engineers perform more effectively. While this book specifically addresses process plants, the principles are applicable to other types of engineering project where multidisciplinary engineering skills are required, such as power plant and general factory construction. It focuses on the technical aspects, which typically influence the configuration of the plant as a whole, on the interface between the various disciplines involved, and the way in which work is done -- the issues central to the co--ordination of the overall engineering effort. It develops an awareness of relationships with other parties -- clients, suppliers, package contractors, and construction managers -- and of how the structure and management of these relationships impact directly on the performance of the project engineer. Readers will welcome the author's straightforward approach in tackling sensitive issues head on. COMPLETE CONTENTS* Introduction* A process plant* A project and its management* A brief overview* The engineering work and its management* The project's industrial environment* The commercial environment* The contracting environment* The economic environment* Studies and proposals* Plant layout and modelling* Value engineering and plant optimization* Hazards, loss, and safety* Specification, selection and purchase* Fluid transport* Bulk solids transport* Slurries and two--phase transport* Hydraulic design and plant drainage* Observations on multidiscipline engineering* Detail design and drafting* The organization of work* Construction* Construction contracts* Commissioning* Communication* Change and chaos* Fast--track projects* Advanced information management* Project strategy development* Key issues summary
This second volume on detox fashion covers five key aspects relevant to the topic sustainable chemistry and wet processes: Sustainable Chemicals: A Model for Practical Substitution; Sustainable Wet Processing; Coloration and Functional Finishing of Cotton with Plant Extracts; Call for an Environmental Impact Assessment of Bio-based Dyeing-an Overview; and Enzymes: Biocatalysts for Cleaning Up the Textile and Apparel Sector. The book also presents interesting solutions at the level of the supply chain with regard to sustainable chemistry and wet processes.
This thesis describes novel strategies for the rational design of several cutting-edge high-efficiency photocatalysts, for applications such as water photooxidation, reduction, and overall splitting using a Z-Scheme system. As such, it focuses on efficient strategies for reducing energy loss by controlling charge transfer and separation, including novel faceted forms of silver phosphate for water photooxidation at record high rates, surface-basic highly polymerised graphitic carbon nitride for extremely efficient hydrogen production, and the first example of overall water splitting using a graphitic carbon nitride-based Z-Scheme system. Photocatalytic water splitting using solar irradiation can potentially offer a zero-carbon renewable energy source, yielding hydrogen and oxygen as clean products. These two 'solar' products can be used directly in fuel cells or combustion to provide clean electricity or other energy. Alternatively they can be utilised as separate entities for feedstock-based reactions, and are considered to be the two cornerstones of hydrogenation and oxidation reactions, including the production of methanol as a safe/portable fuel, or conventional catalytic reactions such as Fischer-Tropsch synthesis and ethylene oxide production. The main driving force behind the investigation is the fact that no photocatalyst system has yet reported combined high efficiency, high stability, and cost effectiveness; though cheap and stable, most suffer from low efficiency.
This book not only explores catalysis processes in redox reactions but also proposes a potential after-treatment strategy. Summarizing the authors' major works, it offers a guidebook for those working on environmental and industrial catalysis. It presents insights into reaction kinetics in a variety of materials and analyzes the external conditions influencing the reaction. As such it is of particular interest to engineers and scientists in the field of material chemistry, chemical engineering and automobile industry. With novel images and illustrations, it provides a new perspective for interpreting soot abatement material and understanding the reaction process and inspires scientists to design new catalysts with moderate redox capacity.
This book is a simple and didactic account of the developments and practical applications of predictive, adaptive predictive, and optimized adaptive control from a perspective of stability, including the latest methodology of adaptive predictive expert (ADEX) control. ADEX Optimized Adaptive Control Systems is divided into six parts, with exercises and real-time simulations provided for the reader as appropriate. The text begins with the conceptual and intuitive knowledge of the technology and derives the stability conditions to be verified by the driver block and the adaptive mechanism of the optimized adaptive controller to guaranty the desired control performance. The second and third parts present strategic considerations of predictive control and related adaptive systems necessary for the proper design of driver block and adaptive mechanism and thence their technical realization. The authors then proceed to detail the stability theory that supports predictive, adaptive predictive and optimized adaptive control methodologies. Benchmark applications of these methodologies (distillation column and pulp-factory bleaching plant) are treated next with a focus on practical implementation issues. The final part of the book describes ADEX platforms and illustrates their use in the design and implementation of optimized adaptive control systems to three different challenging-to-control industrial processes: waste-water treatment; sulfur recovery; and temperature control of superheated steam in coal-fired power generation. The presentation is completed by a number of appendices containing technical background associated with the main text including a manual for the ADEX COP platform developed by the first author to exploit the capabilities of adaptive predictive control in real plants. ADEX Optimized Adaptive Control Systems provides practicing process control engineers with a multivariable optimal control solution which is adaptive and resistant to perturbation and the effects of noise. Its pedagogical features also facilitate its use as a teaching tool for formal university and Internet-based open-education-type graduate courses in practical optimal adaptive control and for self-study.
This thesis reports the latest developments in the direct amination of various C H bonds using an H Zn exchange/electrophilic amination strategy. McDonald and co-workers reveal this approach to be a rapid and powerful method for accessing a variety of functionalized amines. The material outlined in this book shows how McDonald achieved C H zincation using strong, non-nucleophilic zinc bases and subsequent electrophilic amination of the corresponding zinc carbanions with copper as a catalyst and O-benzoylhydroxylamines as the electrophilic nitrogen source. McDonald's findings are of relevance to medicinal chemistry, drug discovery and materials science. Her thesis is a source of inspiration for scientists entering the field and students beginning their PhD in a related area.
This new edition includes brand-new developments in the modeling of processes in the column apparatuses. It analyzes the radial velocity component and axial variation in the axial velocity in the column. These models are described in five new chapters. The book presents models of chemical and interphase mass transfer processes in industrial column apparatuses, using convection-diffusion and average-concentration models. It also introduces average concentration models for quantitative analysis, which use the average values of the velocity and concentration over the cross-sectional area of the column. The new models are used to analyze a broad range of processes (simple and complex chemical reactions, physical and chemical absorption, physical and chemical adsorption, catalytic reactions in the cases of physical and chemical adsorption mechanism), and make it possible to model sulfur dioxide gas purification processes.
This book gives background information why shale formations in the world are important both for storage capacity and enhanced gas recovery (EGR). Part of this book investigates the sequestration capacity in geological formations and the mechanisms for the enhanced storage rate of CO2 in an underlying saline aquifer. The growing concern about global warming has increased interest in geological storage of carbon dioxide (CO2). The main mechanism of the enhancement, viz., the occurrence of gravity fingers, which are the vehicles of enhanced transport in saline aquifers, can be visualized using the Schlieren technique. In addition high pressure experiments confirmed that the storage rate is indeed enhanced in porous media. The book is appropriate for graduate students, researchers and advanced professionals in petroleum and chemical engineering. It provides the interested reader with in-depth insights into the possibilities and challenges of CO2 storage and the EGR prospect.
This book is dedicated to the rapidly growing field of microporous
ceramic membranes with separating layers of pore diameter less than
2nm.
The on-going green trend in the personal care industry coupled with global environmental concerns, place natural-origin, biodegradable and skin-friendly surfactants such as alkyl polyglucosides (APGs) in high demand. After successful use in cosmetics, sufficient data has been obtained to welcome some sugar emulsifiers into the field of drug dosage. "Alkyl Polyglucosides" presents a comprehensive compendium which guides a researcher from the APG-related preformulation stages to formulation processing, including the investigation of various APG-stabilized systems skin performance. This book introduces various APG representatives, their benefits in relation to certain conventional surfactants, physicochemical and interfacial properties, possible interaction with commonly used ingredients and diverse characterization techniques indispensable for the assessment of colloidal systems. The first chapter introduces alkyl polyglucosides, followed by chapters on their properties, behaviour, an overview of the patent protection mechanisms and guidelines for submitting patent applications. Finally, a conclusion surveys international patent applications involving APGs. introduces the field of alkyl polyglucoside emulsifiers, listing
all the contemporary and newly synthesized APG emulsifiersprovides
detailed information on various aspects of APG-based structures
reveals potential of APG-stabilized vehicles as prospective
delivery systems using several model drugs and cosmetic actives
includes an up-to-date review of research conducted in the field of
APGs, facilitating future preformulation and formulation studies
for researchersoffers a concise and practical compendium of
characterization techniques
Industrial Process Identification brings together the latest advances in perturbation signal design. It describes the approaches to the design process that are relevant to industries. The authors' discussion of several software packages (Frequency Domain System Identification Toolbox, prs, GALOIS, multilev_new, and Input-Signal-Creator) will allow readers to understand the different designs in industries and begin designing common classes of signals. The authors include two case studies that provide a balance between the theory and practice of these designs: the identification of a direction-dependent electronic nose system; and the identification of a multivariable cooling system with time-varying delay. Major aspects of signal design such as the formulation of suitable specifications in the face of practical constraints, the classes of designs available, the various objectives necessitating separate treatments when dealing with nonlinear systems, and extension to multi-input scenarios, are discussed. Codes, including some that will produce simulated data, are included to help readers replicate the results described. Industrial Process Identification is a powerful source of information for control engineers working in the process and communications industries seeking guidance on choosing identification software tools for use in practical experiments and case studies. The book will also be of interest to academic researchers and students working in electrical, mechanical and communications engineering and the application of perturbation signal design. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
The present work focuses on the development of intensified small-scale extraction units for spent nuclear fuel reprocessing using advanced process engineering with combined experimental and modelling methodologies. It discusses a number of novel elements, such as the intensification of spent fuel reprocessing and the use of ionic liquids as green alternatives to organic solvents. The use of ionic liquids in two-phase liquid-liquid separation is new to the Multiphase Flow community, and has proved to be challenging, especially in small channels, because of the surface and interfacial properties involved, which are very different to those of common organic solvents. Numerical studies have been also performed to couple the hydrodynamics at small scale with the mass transfer. The numerical results, taken together with scale-up studies, are used to evaluate the applicability of the small-scale units in reprocessing large volumes of nuclear waste.
This volume presents the latest developments in the use of organometallic catalysis for the formation of bulk chemicals and the production of energy, via green processes including efficient utilization of waste feedstocks from industry. The chemistry of carbon dioxide relating to its hydrogenation into methanol -an eco-friendly energy storage strategy- and its uses as C1 synthon for the formation of important building-blocks for fine chemicals industry are covered. Catalytic hydrogenations of various functional groups and hydrogen transfer reactions including the use of first row metal catalysts are presented as well as the conversion of alcohols to carboxylates via hydrogen transfer with a zero-waste strategy using water. Transformation of renewable or bio-based raw materials is surveyed through alkene metathesis and C-O bond activations and functionalizations. A green aspect for selective formation of C-C, C-O and C-N bonds involves direct regioselective C-H bond activations and functionalizations. These transformations can now be promoted under mild reaction conditions due to the use photoredox catalyts. C-H bond oxidation using visible light leads mainly to the formation of C-O and C-N bonds, whereas cross-coupled C-C bonds can be formed through the radical additions on (hetero) arenes using photoredox assisted mechanism.
Simulation of ODE/PDE Models with MATLAB(r), OCTAVE and SCILAB shows the reader how to exploit a fuller array of numerical methods for the analysis of complex scientific and engineering systems than is conventionally employed. The book is dedicated to numerical simulation of distributed parameter systems described by mixed systems of algebraic equations, ordinary differential equations (ODEs) and partial differential equations (PDEs). Special attention is paid to the numerical method of lines (MOL), a popular approach to the solution of time-dependent PDEs, which proceeds in two basic steps: spatial discretization and time integration. Besides conventional finite-difference and element techniques, more advanced spatial-approximation methods are examined in some detail, including nonoscillatory schemes and adaptive-grid approaches. A MOL toolbox has been developed within MATLAB(r)/OCTAVE/SCILAB. In addition to a set of spatial approximations and time integrators, this toolbox includes a collection of application examples, in specific areas, which can serve as templates for developing new programs. Simulation of ODE/PDE Models with MATLAB(r), OCTAVE and SCILAB provides a practical introduction to some advanced computational techniques for dynamic system simulation, supported by many worked examples in the text, and a collection of codes available for download from the book s page at www.springer.com. This text is suitable for self-study by practicing scientists and engineers and as a final-year undergraduate course or at the graduate level.
Detailed mathematical models are increasingly being used by
companies to gain competitive advantage through such applications
as model-based process design, control and optimization. Thus,
building various types of high quality models for processing
systems has become a key activity in Process Engineering. This
activity involves the use of several methods and techniques
including model solution techniques, nonlinear systems
identification, model verification and validation, and optimal
design of experiments just to name a few. In turn, several issues
and open-ended problems arise within these methods, including, for
instance, use of higher-order information in establishing parameter
estimates, establishing metrics for model credibility, and
extending experiment design to the dynamic situation.
This monograph provides an account of how the synthetic nitrogen industry became the forerunner of the 20th-century chemical industry in Europe, the United States and Asia. Based on an earlier SpringerBrief by the same author, which focused on the period of World War I, it expands considerably on the international aspects of the development of the synthetic nitrogen industry in the decade and a half following the war, including the new technologies that rivalled the Haber-Bosch ammonia process. Travis describes the tremendous global impact of fixed nitrogen (as calcium cyanamide and ammonia), including the perceived strategic need for nitrogen (mainly for munitions), and, increasingly, its role in increasing crop yields, including in Italy under Mussolini, and in the Soviet Union under Stalin. The author also reviews the situation in Imperial Japan, including the earliest adoption of the Italian Casale ammonia process, from 1923, and the role of fixed nitrogen in the industrialization of colonial Korea from the late 1920s. Chemists, historians of science and technology, and those interested in world fertilizer production and the development of chemical industry during the first four decades of the twentieth century will find this book of considerable value.
This book focuses on the assessment of different coal gasification technologies for the utilization of Russian coals with analyses of economically feasible process chains for preparation of marketable products from high-ash coals. The work presented is important in view of the general competitiveness that marks the future of coal in the world. As the cheapest form of fuel (in comparable terms) coal will undoubtedly be in demand resources in the world. The book consists of parts which include an overview about the major coal characteristics, detailed discussion of fundamental aspects of gasification technologies and gasifiers, an introduction into annex concepts, an overview about different technologies of syngas utilization, technical and economic assessment of several coal-to-liquid and coal-to-chemicals routes, and feasibility demonstration for selected process chains. This book is addressed to the management and engineers of Russian coal companies and scientific staff of Russian research institutions working in the field of coal utilization.
This book covers all aspects of containment technology in depth and the latest developments in this exciting field are introduced. This book is a key publication to planning engineers, production managers and those interested in getting a picture of the different applications of the isolator technology. References on literature, laws, norms and guidelines will support the reader to become acquainted with the containment technology.
Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale." Industrial and Process Furnaces: Principles, 2nd Edition"
provides comprehensive coverage of all aspects of furnace operation
and design, including topics essential for process engineers and
operators to better understand furnaces. This includes: the
combustion process and its control, furnace fuels, efficiency,
burner design and selection, aerodynamics, heat release profiles,
furnace atmosphere, safety and emissions. These elements and more
are brought together to illustrate how to achieve optimum design
and operation, with real-world case studies to showcase their
application.
This book explores the use of recent advanced multiple stage conversion technologies. These applications combine conventional fluidised bed systems with new plasma technologies to efficiently generate different energy outputs from waste materials with minimum cleaning effort. Using a mix of modelling and experimental approaches, the author provides fundamental insights into how the key operating variables of the two-stage process may impact the final quality of syngas. This thesis serves as a useful reference guide on the modelling and design of single and multiple-stage systems for thermal waste treatment. Its extended section on plant configuration and operation of waste gasification plants identifies the main technical challenges, and is of use to researchers entering the field.
Ion-exchange Technology I: Theory and Materials describes the theoretical principles of ion-exchange processes. More specifically, this volume focuses on the synthesis, characterization, and modelling of ion-exchange materials and their associated kinetics and equilibria. This title is a highly valuable source not only to postgraduate students and researchers but also to industrial R&D specialists in chemistry, chemical, and biochemical technology as well as to engineers and industrialists.
This is the second edition of "Melt Rheology and its Role in Plastics Processing," although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that will be of direct use to practitioners. Extensive references are provided for those wishing to pursue certain issues in greater depth. While the primary audience is applied polymer scientists and plastics engineers, the book will also be of use to postgraduate students in polymer science and engineering and as a text for a graduate course.
"Transformation and Utilization of Carbon Dioxide"shows the various organic, polymeric and inorganic compounds which result from the transformation of carbon dioxide through chemical, photocatalytic, electrochemical, inorganic and biological processes. The book consists of twelve chapters demonstrating interesting examples of these reactions, depending on the types of reaction and catalyst. It also includes two chapters dealing with the utilization of carbon dioxide as a reaction promoter and presents a wide range of examples of chemistry and chemical engineering with carbon dioxide. "Transformation and Utilization of Carbon Dioxide"is a collective work of reviews illustrative of recent advances in the transformation and utilization of carbon dioxide. This book is interesting and useful to a wide readership in the various fields of chemical science and engineering. Bhalchandra Bhanage is a professor of industrial and engineering chemistry at Institute of Chemical Technology, India. Masahiko Arai is a professor of chemical engineering at Hokkaido University, Japan."
In this series Rajiv Kohli and Kash Mittal have brought together the work of experts from different industry sectors and backgrounds to provide a state-of-the-art survey and best-practice guidance for scientists and engineers engaged in surface cleaning or handling the consequences of surface contamination. The expert contributions in this volume cover important
fundamental aspects of surface contamination that are key to
understanding the behavior of specific types of contaminants. This
understanding is essential to develop preventative and mitigation
methods for contamination control. The coverage complements the
treatment of surface contamination in vol.1, Fundamental and
Applied Aspects. This volume covers: Sources and Generation of
Particles; Manipulation Techniques for Particles on Surfaces;
Particle Deposition and Rebound; Particle Behavior in Liquid
Systems; Biological and Metallic Contamination; and includes a
comprehensive list of current standards and resources. Feature: Comprehensive coverage of innovations in surface contamination and cleaning Benefit: One-stop series where a wide range of readers will be sure to find a solution to their cleaning problem, saving the time involved in consulting a range of disparate sources. Feature: Written by established experts in the contamination and cleaning field Benefit: Provides an authoritative resource Feature: Each chapter is a comprehensive review of the state of the art. Benefit: Can be relied on to provide insight, clarity and real expertise on up-to-the-minute innovations. Feature: Case studies included Benefit: Case studies help the reader see theory applied to the solution of real-world practical cleaning and contamination problems.
Since the industrial revolution, chlorine remains an iconic molecule even though its production by the electrolysis of sodium chloride is extremely energy intensive. The rationale behind this book is to present useful and industrially relevant examples for alternatives to chlorine in synthesis. This multi-authored volume presents numerous contributions from an international spectrum of authors that demonstrate how to facilitate the development of industrially relevant and implementable breakthrough technologies. This volume will interest individuals working in organic synthesis in industry and academia who are working in Green Chemistry and Sustainable Technologies. |
You may like...
Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka
Hardcover
R3,950
Discovery Miles 39 500
Basics of Software Engineering…
Natalia Juristo, Ana M. Moreno
Hardcover
R5,369
Discovery Miles 53 690
Green IT Engineering: Social, Business…
Vyacheslav Kharchenko, Yuriy Kondratenko, …
Hardcover
R4,127
Discovery Miles 41 270
|