![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
This book highlights the innovations in textile fibres, that is the starting point of the supply chain. There are numerous innovations made in terms of making the existing fibres sustainable and also to discover new sustainable fibres. This book deals with those innovative sustainable textile fibres in detail. It also presents an overview of various current textile fibres, their issues associated with sustainability and how new, sustainable fibres overcome those issues. Finally it discusses the challenges and implications of these sustainable fibres on technical and economic fronts.
This book demonstrates the basic and fundamental aspects of nanotechnology and potential application as a photocatalysis in multiple application especially in environment and energy harvesting. This book also contains methods of preparation and characterization of unique nanostructured photocatalysts, and details about their catalytic action. The book consists of seven chapters, including the principles and fundamentals of heterogeneous photocatalysis; the mechanisms and dynamics of surface photocatalysis; research on pure and composites based materials with unique nanostructures; the latest developments and advances in exploiting photocatalyst alternatives to WO3; and photocatalytic materials for applications other than the traditional degradation of pollutants, such as carbon dioxide reduction, water oxidation, a complete spectrum of selective organic transformations and water splitting by photocatalytic reduction. This book will appeal to a wide readership of the academic and industrial researchers and it can also be used in the classroom for undergraduate and graduate students focusing on heterogeneous photocatalysis, sustainable chemistry, energy conversion and storage, nanotechnology, chemical engineering, environmental protection, optoelectronics, sensors, and surface and interface science.
This book covers synthesis, characterization, stability, heat transfer and applications of nanofluids. It includes different types of nanofluids, their preparation methods as well as its effects on the stability and thermophysical properties of nanofluids. It provides a discussion on the mechanism behind the change in the thermal properties of nanofluids and heat transfer behaviour. It presents the latest information and discussion on the preparation and advanced characterization of nanofluids. It also consists of stability analysis of nanofluids and discussion on why it is essential for the industrial application. The book provides a discussion on thermal boundary layer properties in convection. Future directions for heat transfer applications to make the production and application of nanofluids at industrial level are also discussed.
This book provides an indispensable reference guide to the sustainable control and treatment of biomass residues from a wide variety of agroindustrial sources, e.g. sugarcane, livestock, pulp & paper, food wastes, among others. Pursuing a structured and clear approach, the book opens with a general introduction to biomass, sustainability and environmental chemistry aspects, and on how the use of biomass as a renewable material ties into the UN's Sustainable Development Goals. The book subsequently presents analytical methods applied to different biomass types and their residues and reviews monitoring and treatment strategies in order to avoid pollution of the same. The book closes by describing the value chains, bioeconomy and circular economy for globally relevant agroindustrial biomass. The book is intended for researchers in academia and industry alike and shows how, in addition to sustainability criteria and life cycle assessments, integrating environmental chemistry aspects can contribute to a holistic approach, and unlock the economic potential of biomass in the age of circular economy and sustainable development.
This book describes a simplified approach to the modelling and process design of a fixed bed hybrid bioreactor for wastewater treatment. In this work a simplified model for hybrid bioreactor is developed to determine output parameters like exiting substrate concentration in bulk liquid, average substrate flux in the biofilm, effective and total biofilm thickness. The model is based on mass balance of both carbonaceous substrate and biomass under suspended and attached growth simultaneously along with substrate mass transport into the biofilm. The proposed model has also been validated with the results obtained from experimental study with municipal wastewater considering as a low strength wastewater with no inhibition. There is a flexibility of the proposed model making it a versatile one to find out the exiting substrate concentration both in hybrid bioreactor as well as in a completely mixed biofilm reactor (CMBR). The book caters to academics and practitioners working in the field of advanced wastewater treatment.
This highly informative and carefully presented textbook introduces the general principles involved in system design and optimization as applicable to thermal systems, followed by the methods to accomplish them. It introduces contemporary techniques like Genetic Algorithms, Simulated Annealing, and Bayesian Inference in the context of optimization of thermal systems. There is a separate chapter devoted to inverse problems in thermal systems. It also contains sections on Integer Programming and Multi-Objective optimization. The linear programming chapter is fortified by a detailed presentation of the Simplex method. A major highlight of the textbook is the inclusion of workable MATLAB codes for examples of key algorithms discussed in the book. Examples in each chapter clarify the concepts and methods presented and end-of-chapter problems supplement the material presented and enhance the learning process.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics in pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.
This book introduces the concept, design and application of green biocomposites, with a specific focus on the current demand for green biocomposites for automotive and aerospace components. It discusses the mathematical background, innovative approaches to physical modelling, analysis and design techniques. Including numerous illustrations, tables, case studies and exercises, the text summarises current research in the field. It is a valuable reference resource for researchers, students and scientists working in the field of materials science.
This book highlights the challenges in sustainable wet processing of textiles, natural dyes, enzymatic textiles and sustainable textile finishes. Textile industry is known for its chemical processing issues and many NGO's are behind the textile sector to streamline its chemical processing, which is the black face of clothing and fashion sector. Sustainable textile chemical processes are crucial for attaining sustainability in the clothing sector. Seven comprehensive chapters are aimed to highlight these issues in the book.
This book brings together recent research from across the world on enriched methane, and examines the production, distribution and use of this resource in internal combustion engines and gas turbines. It aims to provide readers with an extensive account of potential technological breakthroughs which have the capacity to revolutionize energy systems. Enriched methane, a gas mixture composed by methane and hydrogen (10-30%vol), constitutes the first realistic step towards the application of hydrogen as an energy vector. It provides strong benefits in terms of emissions reduction, that is -11% of CO2, eq emission with the combustion of a 30%vol H2 mixture, if hydrogen is produced from renewable energy sources. Enriched methane offers the following advantages:* it can be produced at competitive costs; * it can be distributed by means of the medium pressure natural gas grid;* it can be stored in traditional natural gas storage systems; <* it can feed natural gas internal combustion engine, improving conversion efficiency. This book is intended for academics in chemical engineering and energy production, distribution and storage. It is also intended for energy producers, engineering companies and R&D organizations.
This book mainly focuses on the solar energy conversion with the nanomaterials. It describes the applications on two dimensional carbon nanomaterials: graphene and graphdiyne. Also, works on conductive polymer and bio-inspired material is included. The work described here is the first few reports on the applications of graphene, which becomes one of the hottest materials nowadays. This work also proves and studies the charge transfer between the semi-conductor and graphene interface, which is benefit to the applications in solar cells and photocatalysis. At the same time, method to synthesize and assemble the given nanomaterials (TiO2 nanosheets, gold nanoparticles, graphene, PS-PAA, PANI) is detailed, which is easier to the readers to repeat the experiments.
This book is intended to serve as a textbook for advanced undergraduate and graduate students as well as professionals engaged in application of thermo-fluid science to the study of combustion. The relevant thermo-chemistry and thermo-physical data required for this study are provided in the 6 appendices along with appropriate curve-fit coefficients. To facilitate gradual learning, two chapters are devoted to thermodynamics of pure and gaseous mixture substances, followed by one chapter each on chemical equilibrium and chemical kinetics. This material when coupled with a dedicated chapter on understanding of equations governing transport of momentum, heat and mass in the presence of chemical reactions provides adequate grounding to undertake analysis of practical combustion equipment, of premixed and diffusion flames as well as of solid particle and liquid droplet combustion. The learnings from the aforementioned chapters are taken to a uniquely strong chapter on application case studies, some of which have special relevance for developing countries.
This book presents the proceedings of the International Conference on Health, Safety, Fire, Environment, and Allied Sciences (HSFEA 2018). The book highlights the latest developments in the field of science and technology aimed at improving health and safety in the workplace. The volume comprises content from leading scientists, engineers, and policy makers, discussing the effect of vehicular pollution, process, engineering, construction and other industrial activities on air quality and the impact these have on health and the environment. The contents of this volume will be of interest to researchers, practitioners, and policy makers alike.
The damage that can occur in certain fibrous raw materials or in textiles during their production and storage of textiles is expertly described in this book by Karl Mahall. In particular, he explains methods for finding concealed textile defects by using microscopic analysis.Besides minor improvements and corrections, the new edition contains a new chapter "Poultry Feathers as Filling Material for Bedding and Textiles - Analysis of Faults." The reason for its inclusion is that natural feathers and down are not only used as a filling material for bedding but also for garments, such as anoraks, coats and sleeping bags.This book is especially useful as a manual for both chemical and textile engineers and quality engineers. It is also a useful reference for others in the textile industry in general.
This book features a selection of revised and extended research articles written by prominent researchers who participated in the 26th World Congress on Engineering and Computer Science (WCECS 2018), held in San Francisco, USA, on October 23-25, 2018. Topics covered include engineering mathematics, electrical engineering, communications systems, computer science, chemical engineering, systems engineering, manufacturing engineering and industrial applications. With contributions carefully chosen to represent the most cutting-edge research presented at the conference and highlighting the state of the art in engineering technologies and the physical sciences and their applications, the book is a valuable reference resource for graduate students and researchers working in these fields.
This second volume on detox fashion covers five key aspects relevant to the topic sustainable chemistry and wet processes: Sustainable Chemicals: A Model for Practical Substitution; Sustainable Wet Processing; Coloration and Functional Finishing of Cotton with Plant Extracts; Call for an Environmental Impact Assessment of Bio-based Dyeing-an Overview; and Enzymes: Biocatalysts for Cleaning Up the Textile and Apparel Sector. The book also presents interesting solutions at the level of the supply chain with regard to sustainable chemistry and wet processes.
Cancer is an incredibly diverse and difficult disease to treat, and even after decades of research there is no definitive cure. Therefore, it is highly crucial to search for novel and new organic molecules with high potency, low toxicity, and low mutagenicity with selective anticancer properties that are able to overcome frequently developed resistance to available drugs. Heterocyclic anticancer agents are an important class of drugs for cancer therapies. This book explores different heterocycles and their use as anticancer therapies. Topics covered include different heterocyclic derivatives, the impact of heterocycles on anticancer agent development, and naturally occurring heterocycles.
This book not only explores catalysis processes in redox reactions but also proposes a potential after-treatment strategy. Summarizing the authors' major works, it offers a guidebook for those working on environmental and industrial catalysis. It presents insights into reaction kinetics in a variety of materials and analyzes the external conditions influencing the reaction. As such it is of particular interest to engineers and scientists in the field of material chemistry, chemical engineering and automobile industry. With novel images and illustrations, it provides a new perspective for interpreting soot abatement material and understanding the reaction process and inspires scientists to design new catalysts with moderate redox capacity.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors. All chapters from Topics in Organometallic Chemistry are published OnlineFirst with an individual DOI. In references, Topics in Organometallic Chemistry is abbreviated as Top Organomet Chem and cited as a journal
This book presents current research into the catalytic combustion of methane using perovskite-type oxides (ABO3). Catalytic combustion has been developed as a method of promoting efficient combustion with minimum pollutant formation as compared to conventional catalytic combustion. Recent theoretical and experimental studies have recommended that noble metals supported on (ABO3) with well-ordered porous networks show promising redox properties. Three-dimensionally ordered macroporous (3DOM) materials with interpenetrated and regular mesoporous systems have recently triggered enormous research activity due to their high surface areas, large pore volumes, uniform pore sizes, low cost, environmental benignity, and good chemical stability. These are all highly relevant in terms of the utilization of natural gas in light of recent catalytic innovations and technological advances. The book is of interest to all researchers active in utilization of natural gas with novel catalysts. The research covered comes from the most important industries and research centers in the field. The book serves not only as a text for researcher into catalytic combustion of methane, 3DOM perovskite mixed oxide, but also explores the field of green technologies by experts in academia and industry. This book will appeal to those interested in research on the environmental impact of combustion, materials and catalysis.
This book gives background information why shale formations in the world are important both for storage capacity and enhanced gas recovery (EGR). Part of this book investigates the sequestration capacity in geological formations and the mechanisms for the enhanced storage rate of CO2 in an underlying saline aquifer. The growing concern about global warming has increased interest in geological storage of carbon dioxide (CO2). The main mechanism of the enhancement, viz., the occurrence of gravity fingers, which are the vehicles of enhanced transport in saline aquifers, can be visualized using the Schlieren technique. In addition high pressure experiments confirmed that the storage rate is indeed enhanced in porous media. The book is appropriate for graduate students, researchers and advanced professionals in petroleum and chemical engineering. It provides the interested reader with in-depth insights into the possibilities and challenges of CO2 storage and the EGR prospect. |
![]() ![]() You may like...
Professional Tennis Player 101 - A Quick…
Howexpert, Christopher Morris
Hardcover
R787
Discovery Miles 7 870
Winning Ugly - Mental Warfare in…
Brad Gilbert, Steve Jamison
Paperback
Antennas - Fundamentals, design…
Lamont V Blake, Maurice W. Long
Hardcover
R3,017
Discovery Miles 30 170
|