![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
Integrates knowledge on microfiltration and ultrification, membrane chemistry, and characterization methods with the engineering and economic aspects of device performance, device and module design, processes, and applications. The text provides a discussion of membrane fundamentals and an analytical framework for designing and developing new filtrations systems for a broad range of technologically important functions. It offers information on membrane liquid precursors, fractal and stochastic pore space analysis, novel and advanced module designs, and original process design calculations.
This contributed volume provides a critical review of research in the field of Electrochemical Promotion of Catalysis (EPOC). It presents recent developments during the past decade that have led to a better understanding of the field and towards applications of the EPOC concept. The chapters focus on the implementation of EPOC for developing sinter-resistant catalysts, catalysts for hydrogen production, ammonia production and carbon dioxide valorization. The book also highlights the developments towards electropromoted dispersed catalysts and for self-sustained electrochemical promotion which are currently expanding. This authoritative analysis of EPOC is useful for various scientific communities working at the interface of heterogeneous catalysis, solid state electrochemistry and materials science. It is of particular interest to groups whose research focuses on developments towards a better and more sustainable future.
This is one of the first books fully dedicated to the rapidly advancing and expanding research area of deep eutectic solvents. Written by the internationally recognized expert in solution chemistry, it supplies full information regarding preparation of these new eco-friendly solvents, their properties and applications. The current and potential applications of deep eutectic solvents as organic reaction media, catalytic system, in biomass processing, nanotechnology and metal finishing industry, as well as for extraction and separation are extensively discussed.This highly informative and carefully presented book will appeal to practicing chemists (organic chemists, polymer chemists, biochemists) as well as chemical engineers and environmental scientists.
Electrocorrosion and Protection of Metals, Second Edition, compiles theoretical and practical information, outlines the specific problem, and presents the available solutions related to corrosion by external currents. Basic data on the behavior of different metals under the attack of anodic, cathodic, direct and alternating currents is considered, as are the problems of electrocorrosion-from the identification of corrosion damage and detection of the external current sources, to the selection of optimal means and methods of mitigation, monitoring and protection of different metallic structures and structures of reinforced concrete. This book includes comprehensive information and provides necessary links to more detailed, original sources, thus enabling users to solve either general or particular problems of electrocorrosion and protection of metals.
This thesis focuses on the growth of a new type of two-dimensional (2D) material known as hexagonal boron nitride (h-BN) using chemical vapor deposition (CVD). It also presents several significant breakthroughs in the authors' understanding of the growth mechanism and development of new growth techniques, which are now well known in the field. Of particular importance is the pioneering work showing experimental proof that 2D crystals of h-BN can indeed be hexagonal in shape. This came as a major surprise to many working in the 2D field, as it had been generally assumed that hexagonal-shaped h-BN was impossible due to energy dynamics. Beyond growth, the thesis also reports on synthesis techniques that are geared toward commercial applications. Large-area aligned growth and up to an eightfold reduction in the cost of h-BN production are demonstrated. At present, all other 2D materials generally use h-BN as their dielectric layer and for encapsulation. As such, this thesis lays the cornerstone for using CVD 2D h-BN for this purpose.
This work discusses the latest innovations in the manufacture of wood adhesives, and shows how to test their composition. Methods of varying parameters to obtain particular effects are explained, and background summaries of each class of adhesives are provided.
This book is tailored designed for both researchers as well as academics teaching or introducing Advanced Manufacturing course to their classrooms. It presents the current state of research in this field of research and major challenges identified so far, for the integration of additive manufacturing into chemical processes. Unique capability of transforming materials into functional devices with specific geometry using the emerging additive manufacturing technologies has stimulated significant interest in biology, engineering and materials science, to provide custom-made designs for tailored applications. However, the applications of this emerging technology in the field of chemical sciences and engineering have started very recently. Therefore, the major focus of this book is to introduce the basic principles of additive manufacturing practices as well as advent into conventional chemical processes and various unit operations. The potential advantage of introducing these additive manufacturing technologies has the potential to scale down large scale chemical processes into small scale, which offers several advantages including lower foot print, waste reduction and efficient heat integration as well as distributed chemical manufacturing.
The chapters of this book are based upon lectures presented at the NATO Advanced Study Institute on Membrane Processes in Separation and Purification (March 21 - April 2, 1993, Curia, Portugal), organized as a successor and update to a similar Institute that took place 10 years ago (p.M.Bungay, H.K. Lonsdale, M.N. de Pinho (Eds.): Synthetic Membranes: Science, Engineering and Applications, NATO ASI Series, Reidel, Dordrecht, 1986). The decade between the two NATO Institutes witnesses the transition from individually researched membrane processes to an applied and established membrane separation technology, as is reflected by the contents of the corresponding proceeding volumes. By and large, the first volume presents itself as a textbook on membrane processes, still valid, while the present volume focuses on areas of separation need as amenable to membrane processing: Biotechnology and Environmental Technology. Accordingly, the contributions to this volume are grouped into "Membranes in Biotechnology" (11 papers), "Membranes in Environmental Technology" (6 papers), and "New Concepts" (4 papers). This is followed by one contribution each on "Energy Requirements" and "Education," i.e., membrane processes within an academic curriculum. The book thus amounts to a state of the art of applied membrane processing and may well augment the more fundamental approach of its predecessor.
Bridging the gap between laboratory observations and industrial practices, this work presents detailed information on recombinant micro-organisms and their applications in industry and agriculture. All recombinant microbes, bacteria, yeasts and fungi are covered.
Anaerobic digestion is a major field for the treatment of waste and wastewater. Lately the focus has been on the quality of the effluent setting new demands for pathogen removal and for successful removal of unwanted chemicals during the anaerobic process. The two volumes on Biomethanation are devoted to presenting the state of art within the science and application of anaerobic digestion. They describe the basic microbiolgical knowledge of importance for understanding the processes of anaerobic bioreactors along with the newest molecular techniques for examining these systems. In addition, the applications for treatment of waste and wastewaters are presented along with the latest knowledge on process control and regulation of anaerobic bioprocesses. Together these two volumes give an overview of a growing area, which previously has never been presented in such a comprehensive way.
This book presents part of the proceedings of the Manufacturing and Materials track of the iM3F 2021 conference held in Malaysia. This collection of articles deliberates on the key challenges and trends related to manufacturing as well as materials engineering and technology in setting the stage for the world in embracing the Fourth Industrial Revolution. It presents recent findings with regard to manufacturing and materials that are pertinent toward the realizations and ultimately the embodiment of Industry 4.0, with contributions from both industry and academia.
Written by more than 40 world renowned authorities in the field, this reference presents information on plant design, significant chemical reactions, and processing operations in industrial use - offering shortcut calculation methods wherever possible.
A matroid is an abstract mathematical structure that captures combinatorial properties of matrices. This book offers a unique introduction to matroid theory, emphasizing motivations from matrix theory and applications to systems analysis.This book serves also as a comprehensive presentation of the theory and application of mixed matrices, developed primarily by the present author in the last decade. A mixed matrix is a convenient mathematical tool for systems analysis, compatible with the physical observation that "fixed constants" and "system parameters" are to be distinguished in the description of engineering systems.This book will be extremely useful to graduate students and researchers in engineering, mathematics and computer science.
Chemical Reactor Development is written primarily for chemists and chemical engineers who are concerned with the development of a chemical synthesis from the laboratory bench scale, where the first successful experiments are performed, to the design desk, where the first commercial reactor is conceived. It is also written for those chemists and chemical engineers who are concerned with the further development of a chemical process with the objective of enhancing the performance of an existing industrial plant, as well as for students of chemistry and chemical engineering. In Part I, the how' and the why' of chemical reaction engineering are explained, particularly for those who are not familiar with this area. Part II deals with the effects of a number of physical phenomena on the outcome of chemical reactions, such as micro and meso-mixing and residence time distribution, mass transfer between two phases, and the formation of another phase, such as in precipitations. These scale-dependent effects are not only important in view of the conversion of chemical reactions, but also with regard to the selectivity, and in the case of solid products, to their morphology. In Part III, some applications are treated in a general way, including organic syntheses, the conversion and formation of inorganic solids, catalytic processes and polymerizations. The last chapter gives a review of the importance of the selectivity for product quality and for the purity of waste streams. For research chemists and chemical engineers whose work involves chemical reaction engineering. The book is also suitable as a supplementary graduate text.
Substantial enhancement of important properties of materials is manifested when impurity concentrations are reduced to extremely low levels. Current technologies are not fully adequate and the frontiers of our present knowledge of theory and practice need exploration. New concepts and methodologies are evolving and novel purification processes are beinb developed for producing ultra-high-purity metals with purpose-designed atomic patterns for sophisticated functional applications. This book gives a critical, up-to-date evaluation starting with an extended introductory treatise on the fundamentals, followed by a detailed description of the new methods of purification of transition metals and rare earth metals, including their characterization. The subject is approached both from the basic science and applied engineering points of view.
This book discusses the diverse array of particles that are found in coatings from both a physical and a performance standpoint. It also describes the fundamentals of particle behavior and shows how these affect the performance and properties of their end-use applications. It consists of nineteen chapters, demonstrating the wide range of types of particles found in coatings as well as the diversity of the important attributes they hold. The authors also present a forward looking view of current issues and trends in the coatings industry. In addition, a chapter on the use of particles in paper laminate, a closely aligned field, is included. This book is of interest to formulators of any type of coatings as well as researchers in aligned fields that use high volumes of small particles, such as the plastics and paper industries.
This book introduces in a non-traditional way the laws of physical chemistry and its history starting in the 16th century. It reveals to the reader how physical chemists try to understand chemical processes in terms of physical laws. Hydrogen is the main focus of the book as its simplicity makes the relevant laws of nature easy to explain and its role in energetics in the near future is clear. With the basics at hand, the importance of hydrogen as a raw material in the industry and as an energy carrier in the near future is made clear. Only simple chemical processes are discussed and very little mathematics is used. Both the pleasure and use of this field of research are revealed to the interested reader. The expected readership is made of high school students, non-chemistry major freshmen, and general audience with an interest in chemistry. The real aim of this book is to prompt the reader to wonder.
This book systematically covers the fundamentals and applications of modified biochar. The 19 chapters are divided into 3 sections that provide a holistic overview for researchers from all related fields. Section 1 and 2 present the pyrolysis process, including the advantages and limitations of the physical, chemical, and biological modification methods and characterization of modified biochar. Section 3 highlights the wide spectrum of applications of modified biochar in fuel cells and batteries, remediation of organic and inorganic contaminants from soil and water and soil fertilization. Given its scope, the book appeals to a broad readership in various fields of chemical engineering, materials science, and environmental science.
This new volume introduces the applications of microfluidic systems to facilitate biotechnological and biomedical processes. It provides an overview on cutting-edge technologies, summarizes traditional and modern fabrication methods and highlights recent advances regarding the application of lab-on-a-chip (LoC) systems for bioanalytical purposes. This book is ideal for research scientists and students interested at the cross-section between biotechnology, chemistry and chemical engineering.
1. The ninth International Summer School on Crystal Growth. ISSCG IX A complete theory of crystal growth establishes the full dependence of crystal size, shape and structure on external parameters like temperature, pressure, composition, purity, growth rate and stirring of the mother phase, implicitly establishing how the corresponding fields vary in space and time. Such a theory does not exist, however. Therefore equipment to grow crystals is developed on the basis of partial knowledge. Skill, experience and creativity still are of central importance for the success o~ a crystal growth system. In this book we collected contributions from the teachers of the ninth International Summer School on Crystal Growth ISSCG IX, held 11-16 june 1995 at Papendal, the national sports centre of the Netherlands. These contributions were used during the lectures. The authors have tried to present their work in such a way that only basic physical knowledge is required to understand the papers. The book can be used as an introduction to various important sub disciplines of the science and technology of crystal growth. Since, however the information content considerably exceeds a lecture note level and touches the present limits of understanding, it is an up to date handbook as well.
This textbook on fire dynamics provides a comprehensive description of fuels involved in fires, definitions related to fire, thermodynamics for fire calculations, basics of transport processes and fundamental aspects of combustion related to fire, physical descriptions of premixed and non-premixed flames, detailed analysis of the characteristics of fires from solid and liquid fuels, including ignition, spread and burning rates and physical aspects of fire plumes, compartment fires and dust fires. The contents also highlight fundamental aspects related to the evaporation of liquid fuels and pyrolysis of solid fuels which are explained with simplified mathematical expressions. The book includes pedagogical features such as worked examples to illustrate mathematical calculations involved in fire analysis and end-of-chapter review questions. This book proves useful for students, researchers and industry professionals alike.
This book provides an overview of plasticizers, from the latest global research developments to the laws and regulations applied to their use. In addition the book details the author's recently developed methodology for a catalytic hydrogenation of phthalate plasticizers. It presents insights into the development of the catalytic phthalate hydrogenation from the reaction mechanism and catalyst characterization to pilot tests and its industrialization. Given its scope, the book will appeal to a broad readership, particularly professionals at universities and scientific research institutes, as well as practitioners in industry.
Without process R&D there would be no modern pharmaceutical industry. Yet, unlike most other areas of chemistry, it is not taught in schools. As a consequence, the only way for chemists to acquire chemical development expertise is through on-the-job training—a process that can last several years. This book helps shorten the learning curve. Dr. Oljan Repic clearly explains the goals and basic principles of chemical development. He explores the crucial aspects of a new process that must be considered when scaling up a research synthesis to industrial levels. And, with the help of many fascinating case studies and vignettes, he delineates each phase of the development process. Key topics include:
Writing with candor, wit, and an unflagging enthusiasm for his chosen profession, Dr. Repic vividly chronicles the challenges, disappointments, and rewards experienced by the member of a chemical development team responsible for bringing a lifesaving drug to market. This book is an invaluable reference for professionals as well as an important source of guidance and inspiration for young chemists considering entering the field.
This technical book considers the application side of LDA techniques. Starting from the basic theories that are crucial for each LDA user, the main subject of the book is focused on diverse application methods. In details, it deals with universal methodical techniques that have been mostly developed in the last 15 years. The book thus gives for the first time an application reference for LDA users in improving the optical conditions and enhancing the measurement accuracies. It also provides the guidelines for simplifying the measurements and correcting measurement errors as well as for clarifying the application limits and extending the application areas of LDA techniques. Beside the treatments of some traditional optical and flow mechanical features influencing the measurement accuracies, the book shows a broad spectrum of LDA application methods in the manner of measuring the flow turbulence, resolving the secondary flow structures, and quantifying the optical aberrations at measurements of internal flows etc.. Thus, it also supports the further developments of both the hard- and software of LDA instrumentations.
Written by an engineering consultant with over 48 years of experience in the field, this Second Edition provides a reader-friendly and thorough discussion of the fundamental principles and science of cryogenic engineering including the properties of fluids and solids, refrigeration and liquefaction, insulation, instrumentation, natural gas processing, and safety in cryogenic system design. |
You may like...
Applications of Nonlinear Dynamics…
Visarath In, Patrick Longhini, …
Hardcover
R4,092
Discovery Miles 40 920
Microactuators and Micromechanisms…
Erwin Christian Lovasz, Gondi Kondaiah Ananthasuresh, …
Hardcover
R2,674
Discovery Miles 26 740
|