![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > General
Working in the lab, but unsure what your results actually mean? Would you like to know how to apply trueness tests, calculate standard deviations, estimate measurement uncertainties or test for linearity? This book offers you a problem-based approach to analytical quality assurance (AQA). After a short introduction into required fundamentals, various topics such as statistical tests, linear regression and calibration, tool qualification or method validation are presented in the form of exercises for self-study. Solutions are provided in a clear step-by-step manner. Interactive Excel-sheets are available as Extra Materials for trying out the various concepts. For professionals as well as graduate students confronted with analytical quality assurance for the first time, this book will be the clue to meeting such challenges.
The book entails investigative methods for better understanding of the degradation process and uses of high performance paints formulation and also compares them on mild steel (MS) and weathering steel (WS) through various AC/DC electrochemical test methods and surface characterization through electron microscopy, XRD and Raman spectroscopy. This book also deals with the corrosion studies undertaken considering three phases (solid, liquid and gas) with latest techniques and the emphasis has also been given on degradation of materials due to atmospheric corrosion as this is of immense interest to present engineers and researchers. MS has got versatile application as structural steel for construction of buildings, bridges, flyovers, pipelines etc. But this is very much prone to corrosion in industrial and marine environments in presence of harmful pollutants and other industrial effluents in addition to normal humid atmosphere. These corrosion problems are much severe in a tropical country like India with vast coastline. MS corrodes relatively faster and thus leads to colossal loss in every year and to reduce this loss some kind of protection in the form of paints and coatings is always used. Painting is an effective means but quite costly amounting 10-15% of the initial construction cost of superstructures besides cost of repainting at regular interval.
Johannes G. de Vries: Pd-catalyzed coupling reactions.- Gregory T. Whiteker and Christopher J. Cobley: Applications of Rhodium-Catalyzed Hydroformylation in the Pharmaceutical, Agrochemical and Fragrance Industries.- Philippe Dupau: Ruthenium-catalyzed Selective Hydrogenation for Flavor and Fragrance Applications.- Hans-Ulrich Blaser, Benoit Pugin and Felix Spindler: Asymmetric Hydrogenation.- Ioannis Houpis: Case Study: Sequential Pd-catalyzed Cross-Coupling Reactions; Challenges on Scale-up.- Adriano F. Indolese: Pilot Plant Scale Synthesis of an Aryl-Indole - Scale up of a Suzuki Coupling.- Per Ryberg: Development of a Mild and Robust Method for Palladium Catalysed Cyanation on Large Scale.- Cheng-yi Chen: Application of Ring Closing Metathesis Strategy to the Synthesis of Vaniprevir (MK-7009), a 20-Membered Macrocyclic HCV Protease Inhibitor.
The relay feedback test (RFT) has become a popular and efficient in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text. Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) method. Industrial loop tuning for distributed control systems using modified RFT is also described. Many of the problems of tuning rules optimization and identification with modified RFT are accompanied by MATLAB (R) code, downloadable from http://extras.springer.com/978-1-4471-4464-9 to allow the reader to duplicate the results. Non-parametric Tuning of PID Controllers is written for readers with previous knowledge of linear control and will be of interest to academic control researchers and graduate students and to practitioners working in a variety of chemical- mechanical- and process-engineering-related industries.
The ultrasonic velocity profile (UVP) method, first developed in medical engineering, is now widely used in clinical settings. The fluid mechanical basis of UVP was established in investigations by the author and his colleagues with work demonstrating that UVP is a powerful new tool in experimental fluid mechanics. There are diverse examples, ranging from problems in fundamental fluid dynamics to applied problems in mechanical, chemical, nuclear, and environmental engineering. In all these problems, the methodological principle in fluid mechanics was converted from point measurements to spatio-temporal measurements along a line. This book is the first monograph on UVP that offers comprehensive information about the method, its principles, its practice, and applied examples, and which serves both current and new users. Current users can confirm that their application configurations are correct, which will help them to improve the configurations so as to make them more efficient and effective. New users will become familiar with the method, to design applications on a physically correct basis for performing measurements accurately. Additionally, the appendix provides necessary practical information, such as acoustic properties.
This monograph details basic concepts and tools fundamental for the analysis and synthesis of linear systems subject to actuator saturation and developments in recent research. The authors use a state-space approach and focus on stability analysis and the synthesis of stabilizing control laws in both local and global contexts. Different methods of modeling the saturation and behavior of the nonlinear closed-loop system are given special attention. Various kinds of Lyapunov functions are considered to present different stability conditions. Results arising from uncertain systems and treating performance in the presence of saturation are given. The text proposes methods and algorithms, based on the use of linear programming and linear matrix inequalities, for computing estimates of the basin of attraction and for designing control systems accounting for the control bounds and the possibility of saturation. They can be easily implemented with mathematical software packages.
to increase the use of direct contact processes, the National Science Foundation sup ported a workshop on direct contact heat transfer at the Solar Energy Research Insti tute in the summer of 1985. We served as organizers for this workshop, which em phasized an area of thermal engineering that, in our opinion, has great promise for the future, but has not yet reached the point of wide-spread commercial application. Hence, a summary of the state of knowledge at this point is timely. The workshop had a dual objective: 1. To summarize the current state of knowledge in such a form that industrial practi tioners can make use of the available information. 2. To indicate the research and development needed to advance the state-of-the-art, indicating not only what kind of research is needed, but also the industrial poten tial that could be realized if the information to be obtained through the proposed research activities were available.
Microdroplet technology has recently emerged to provide new and diverse applications via microfluidic functionality, especially in various areas of biology and chemistry. This book, then, gives an overview of the principle components and wide-ranging applications for state-of-the-art of droplet-based microfluidics. Chapter authors are internationally-leading researchers from chemistry, biology, physics and engineering that present various key aspects of micrdroplet technology -- fundamental flow physics, methodology and components for flow control, applications in biology and chemistry, and a discussion of future perspectives. This book acts as a reference for academics, post-graduate students, and researcher wishing to deepen their understand of microfluidics and introduce optimal design and operation of new droplet-based microfluidic devices for more comprehensive analyte assessments.
Advances in Catalysis, Volume 64, fills the gap between journal papers and textbooks across the diverse areas of catalysis research. For more than 60 years, this series has dedicated itself to record and present the latest progress in the field of catalysis, thus providing the scientific community with comprehensive and authoritative reviews. This series is an invaluable and comprehensive resource for chemical engineers and chemists working in the field of catalysis in both academia and industry.
General introduction - Definition of nanodispersions (nanosuspensions, nanoemulsions, swollen micelles or microemulsions, liposomes and vesicles) and their size range. General description of their colloid stability. Main advantages of nanodispersions and their industrial applications. Preparation of nanosuspensions by top-up process - Nucleation and growth and control of particle size distribution. Factors determining the formation of narrow particle size distribution. Role of surfactants and polymers. Preparation of nano-polymer colloids (lattices) by emulsion and dispersion polymerization. Factors affects the stability of nanosuspensions. Preparation of nanosuspensions by bottom down process - Dispersion of preformed particles in liquids and the need of a wetting agent. Break-up of aggregates and agglomerates by application of high speed stirrers. Reduction of particle size by application of intense energy (microfluidization or bead milling). Maintenance of the colloid stability of the resulting particles. Reduction of Ostwald ripening. Industrial applications of nanosuspensions - Application in pharmacy to enhance bioavailability, Application in sunscreens for UV protection. Application in paints and coatings. Preparation of nanoemulsions by the use of high pressure homogenisers - Principles of emulsion formation and the role of the emulsifier. Selection of emulsifiers. Methods of emulsification and prevention of coalescence during emulsification. Origin of colloid stability of nanoemulsions. Prevention of Ostwald ripening Low energy methods for nanoemulsion preparation - The phase inversion composition method and the role of mixing the surfactant with oil and water. The phase inversion temperature method for preparation of nanoemulsions. Preparation of nanoemulsions by dilution of microemulsions. Practical examples of nanoemulsions and their industrial application - Nanoemulsions based on non-ionic surfactants and the role of the hydrophilic-lipophilic balance. Effect of oil solubility on the stabilityof nanoemulsions. Nanoemulsions based on polymeric surfactants. Applications in pharmacy and cosmetics. Swollen micelles or microemulsionsDefinition of microemulsions and their size range. Thermodynamic definition of microemulstions. Theories of microemulsion formation and stability. Characterisation of microemulsions using scattering, conductivity and NMR rechniques. Formulation of microemulsions and their industrial applications - Distinction between microemulsions and macroemulsions. Formulation of oil/water and water/oil microemulsions. Selection of emulsifiers for microemulsions. Application of microemulsions in tertiary oil recovery. Liposomes and vesicles - Formation of multilamellar lipid layers (liposomes) by dispersion of lipids in water. Formation of unilamellar vesicles by sonication of the liposomes. Factors responsible for stabilisation of liposomes and vesicles. Use of block copolymers to enhance the stability of vesicles. Applications of liposomes and vesicles in pharmacy and cosmetics.
Living systems synthesize seven different classes of polymers. They provide structure and form for cells and organisms, function as catalysts and energy storage and carry the genetic information. All these polymers possess technically interesting properties. Some of these biopolymers are already used commercially. This special volume of Advances in Biochemical Engineering/Biotechnology comprises 10 chapters. It gives an overview of the water insoluble biopolyesters, in particular of the microbially synthesized poly-hydroxyalkanoate (PHA) family. It reports the state of the art of metabolism, regulation and genetic background, the latest advances made in genetic optimization of bacteria, "construction" of transgenic plants and in vitro synthesis by means of purified enzymes. Furthermore, it describes relevant technologies and evaluates perspectives concerning increasing the economic viability and competitiveness of PHA and discusses applications in medicine, packaging, food and other fields.
Membrane Reactors for Hydrogen Production Processes deals with technological and economic aspects of hydrogen selective membranes application in hydrogen production chemical processes. Membrane Reactors for Hydrogen Production Processes starts with an overview of membrane integration in the chemical reaction environment, formulating the thermodynamics and kinetics of membrane reactors and assessing the performance of different process architectures. Then, the state of the art of hydrogen selective membranes, membrane manufacturing processes and the mathematical modeling of membrane reactors are discussed. A review of the most useful applications from an industrial point of view is given. These applications include: natural gas steam reforming, autothermal reforming, water gas shift reaction, decomposition of hydrogen sulphide, and alkanes dehydrogenation. The final part is dedicated to the description of a pilot plant where the novel configuration was implemented at a semi-industrial scale. Plant engineers, researchers and postgraduate students will find Membrane Reactors for Hydrogen Production Processes a comprehensive guide to the state of the art of membrane reactor technology.
This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering disciplines seeking a solid understanding of heat transfer. This book also: * Adopts a novel inductive pedagogy where commonly understood examples are introduced early and theory is developed to explain and predict readily recognized phenomena * Introduces new techniques as needed to address specific problems, in contrast to traditional texts' use of a deductive approach, where abstract general principles lead to specific examples * Elucidates readers' understanding of the "heat transfer takes time" idea-transient analysis applications are introduced first and steady-state methods are shown to be a limiting case of those applications * Focuses on basic numerical methods rather than analytical methods of solving partial differential equations, largely obsolete in light of modern computer power * Maximizes readers' insights to heat transfer modeling by framing theory as an engineering design tool, not as a pure science, as has been done in traditional textbooks * Integrates practical use of spreadsheets for calculations and provides many tips for their use throughout the text examples
This volume surveys recent research on autonomous sensor networks from the perspective of enabling technologies that support medical, environmental and military applications. State of the art, as well as emerging concepts in wireless sensor networks, body area networks and ambient assisted living introduce the reader to the field, while subsequent chapters deal in depth with established and related technologies, which render their implementation possible. These range from smart textiles and printed electronic devices to implanted devices and specialized packaging, including the most relevant technological features. The last four chapters are devoted to customization, implementation difficulties and outlook for these technologies in specific applications.
The need for batteries has grown exponentially in response to the increase in global energy demand and to the ambitious goals that governments have set up for sustainable energy development worldwide, especially in developed countries. While lithium-ion batteries currently dominate the energy storage market, the limited and unevenly distributed lithium resources have caused huge concerns over the sustainability of the lithium-ion battery technology. Sodium-ion batteries have significant benefits over lithium-ion batteries, including sodium's abundance in the Earth's crust. These batteries have therefore gained research interest, and efforts are being made to use them in place of lithium-ion batteries. While the past decade has witnessed significant research advances and breakthroughs in developing the sodium-ion battery technology, there still remain fundamental challenges that must be overcome to push the technology forward. This book comprises 13 chapters that discuss the fundamental challenges, electrode materials, electrolytes, separators, advanced instrumental analysis techniques, and computational methods for sodium-ion batteries from renowned scientists. The book is a unique combination of all aspects associated with sodium-ion batteries and can therefore be used as a handbook.
Processes that meet the objectives of green chemistry and chemical engineering minimize waste and energy use, and eliminate toxic by-products. Given the ubiquitous nature of products from chemical processes in our lives, green chemistry and chemical engineering are vital components of any sustainable future. Gathering together ten peer-reviewed articles from the Encyclopedia of Sustainability Science and Technology, Innovations in Green Chemistry and Green Engineering provides a comprehensive introduction to the state-of-the-art in this key area of sustainability research. Worldwide experts present the latest developments on topics ranging from organic batteries and green catalytic transformations to green nanoscience and nanotoxicology. An essential, one-stop reference for professionals in research and industry, this book also fills the need for an authoritative course text in environmental and green chemistry and chemical engineering at the upper-division undergraduate and graduate levels.
Gas sensor products are very often the key to innovations in the fields of comfort, security, health, environment, and energy savings. This compendium focuses on what the research community labels as solid state gas sensors, where a gas directly changes the electrical properties of a solid, serving as the primary signal for the transducer. It starts with a visionary approach to how life in future buildings can benefit from the power of gas sensors. The requirements for various applications, such as for example the automotive industry, are then discussed in several chapters. Further contributions highlight current trends in new sensing principles, such as the use of nanomaterials and how to use new sensing principles for innovative applications in e.g. meteorology. So as to bring together the views of all the different groups needed to produce new gas sensing applications, renowned industrial and academic representatives report on their experiences and expectations in research, applications and industrialisation.
Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.
Advances in Water Treatment and Pollution Prevention explores the most up-to-date studies in the field of water pollution. More specifically, this book examines the causes and effects of this threatening phenomenon and identifies the preventive measures that can be taken to contain, and even to defeat, water pollution worldwide. The papers gathered in this volume pinpoint the need to implement greener water treatments to prevent water pollution from impacting ecosystems, human well-being and economies any further. They also successfully outline the processes that have been studied, optimized and developed so far to sustain our environment. Advances in Water Treatment and Pollution Prevention will represent a valuable resource to academic researchers, students, institutions, environmentalists, and anyone interested in environmental policies aimed at safeguarding both the quality and the quantity of water.
Tingyue Gu's second edition provides a comprehensive set of nonlinear multicomponent liquid chromatography (LC) models for various forms of LC, such as adsorption, size exclusion, ion-exchange, reversed-phase, affinity, isocratic/gradient elution and axial/radial flow LC. Much has advanced since the first edition of this book and the author's software, described here, is now used for teaching and research in 32 different countries. This book comes together with a complete software package with graphical user interface for personal computers, offered free for academic applications. Additionally, this book provides detailed methods for parameter estimation of mass transfer coefficients, bed voidage, particle porosity and isotherms. The author gives examples of how to use the software for predicitons and scale-up. In contrast to the first edition, authors do not need to deal with complicated math. Instead, they focus on how to obtain a few parameters for simulation and how to compare simulation results with experimental data. After reading the detailed descriptions in the book, a reader is able to use the simulation software to investigate chromatographic behavior without doing actual experiments. This book is aimed at readers who are interested in learning about LC behaviors and at those who want to scale up LC for preparative- and large-scale applications. Both academic personnel and industrial practitioners can benefit from the use of the book. This new edition includes: - New models and software for pellicular (cored) beads in liquid chromatography - Introduction of user-friendly software (with graphical user interface) - Detailed descriptions on how to use the software - Step-by-step instructions on parameter estimation for the models - New mass-transfer correlations for parameter estimation - Experimental methods for parameter estimation - Several actual examples using the model for product development and scale-up - Updated literature review
Industrial Inorganic Chemistry adds to the previously published graduate level textbooks on Industrial Chemistry by Mark A. Benvenuto. It focuses specifically on inorganic processes, from the largest industrial process for the production of major inorganic chemicals and metals, down to and including smaller niche processes that have become extremely important in maintaining the current quality of life. The book provides a survey on the production of essential elements and compounds, such as sulfuric acid, calcium carbonate, fertilizers as well as numerous metals and alloys. In addition to the fundamental scientific principles each chapter includes discussions on the environmental impacts: mining of raw materials, creation of by-products, pollution, and waste generation, all of which have become key factors for the potential implementation of greener methods. The author also highlights ways in which industry has begun to make industrial inorganic processes more environmentally benign. Examines major inorganic chemistry processes, their effect on every-day life and current efforts to improve processes or adapt "green" chemical production. Provides didactic links between theoretical lecture contents and current, largescale chemical processes. Valuable for students of Inorganic Chemistry, Industrial Chemistry, Chemical Engineering and Materials Sciences.
Prefaces are like speeches before the c- tain; they make even the most self-forgetful performers seem self-conscious. - William Allen Neilson The study of phenomena and processes at the phase boundaries of m- ter is the realm of the surface scientist. The tools of his trade are drawn from across the spectrum of the various scienti?c disciplines. It is therefore interesting that, in investigating the properties of such boundaries, the s- facist must transcend the interdisciplinary boundaries between the subjects themselves. In this respect, he harkens back to the days of renaissance man, when knowledge knew no boundaries, and was pursued simply for its own sake, in the spirit of enlightenment. Chemisorption is a gas-solid interface problem, involving the inter- tion of a gas atom with a solid surface via a charge-transfer process, during which a chemical bond is formed. Because of its importance in such areas as catalysis and electronic-device fabrication, the subject of chemisorption is of interest to a wide range of surfacists in physics, chemistry, materials science, as well as chemical and electronic engineering. As a result, a vast lite- ture has been created, though, despite this situation, there is a surprising scarcity of books on the subject. Moreover, those that are available tend to be experimentally oriented, such as, Chemisorption: An Experimental - proach (Wedler 1976). On the theoretical side, The Chemisorption Bond (Clark 1974) provides a good introduction, but is limited in not describing the more advanced techniques presently in use.
Molecular Sieves - Science and Technology will cover, in a comprehensive manner, the science and technology of zeolites and all related microporous and mesoporous materials. Authored by renowned experts, the contributions will be grouped together topically in such a way that each volume of the book series will be dealing with a specific sub-field. Volume 1 will be entirely devoted to the science of synthesizing molecular sieve materials and include aluminosilicate zeolites, porosils, silica and silica-alumina with ordered mesopores, microporous materials with elements other than silicon and aluminum in the framework and pillared clays.
Biorefineries compiles the basic science and technologies used to convert terrestrial and aquatic biomass into essential molecular compounds and polymeric materials. The book provides in depth insights into this fairly recent concept of industrial chemistry that aims to achieve optimal economic profits while minimizing the environmental impact. Chapters written by renowned experts cover, amongst others, the application of catalysis, downstream processing, biomass sourced olefins, lignin biorefinery techniques and biogas. The authors thoroughly examine and explain the value chain for biomass conversion into platform molecules and their transformation into final products. A comprehensive thematic overview on the topic giving beginners access to fundamental concepts is presented. Supplemented by numerous full color figures and tables, the contents impart knowledge about the involved techniques. Advanced students and experts in the field will find the summary of state-of-the-art research and current literature of valuable interest. Explores the enormous potential of biomass conversion as a future source for fuels and chemicals Focuses on both general scientific background and current innovations in the field of biorefinery Targets students and researchers in Chemistry, Chemical Engineering, Biotechnology, and Materials Science About the Editors Prof. Michele Aresta, Chair of the Scientific Committee of CIRCC in Italy and holds the IMM Chair at the Department of Chemical and Biomolecular Engineering at NUS, Singapore. He is author of over 200 papers and Author or Editor of nine books. Prof. Angela Dibenedetto, Associate Professor at the Department of Chemistry of the University of Bari (Italy) focused on carbon dioxide utilization by applying biorefinery concepts; and Director of the Interuniversity Consortium on Chemical Reactivity and Catalysis-CIRCC. Prof. Franck Dumeignil, Deputy Director of the CNRS joint Unit of Catalysis and Chemistry of Solid (UCCS) of Lille University (France); project coordinator of several projects on chemistry, including the EuroBioRef Project for designing next generation biorefineries.
The use of water for industrial purposes is of foremost importance. It is used as a coolant and industrial activities dealing with power generation, steel and iron, paper and pulp and oil require very large amounts of water. The industry, therefore, resorts to large scale abstraction of water from natural water bodies. This water is often treated with chemicals to combat operational problems like biofouling and corrosion. Such withdrawal and subsequent discharge of large amounts of water have the potential to impart significant impact on the recipient water body. The organisms drawn along with the cooling water, as well as those residing at the discharge zone, are subjected to a combination of mechanical, thermal and chemical stress on a continuous basis. |
You may like...
Atomic Force Microscopy in Process…
Richard Bowen, Nidal Hilal
Hardcover
R3,444
Discovery Miles 34 440
Remediation of Hazardous Waste in the…
Clayton J. Clark, Angela Stephenson Lindner
Hardcover
R5,104
Discovery Miles 51 040
Unconventional Oilseeds and Oil Sources
Abdalbasit Adam Mariod Alnadif, Mohamed Elwathig Saeed Mirghani, …
Paperback
Transparent Data Mining for Big and…
Tania Cerquitelli, Daniele Quercia, …
Hardcover
R4,300
Discovery Miles 43 000
Interop - The Promise and Perils of…
John Palfrey, Urs Gasser
Hardcover
R1,107
Discovery Miles 11 070
Food Sustainability and the Media…
Marta Antonelli, Pierangelo Isernia
Paperback
R2,936
Discovery Miles 29 360
Fundamentals of Secure System Modelling
Raimundas Matulevicius
Hardcover
R2,370
Discovery Miles 23 700
|