Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Technology: general issues > Instruments & instrumentation engineering
The Internet of Things (IoT) has attracted strong interest from both academia and industry. Unfortunately, it has also attracted the attention of hackers. Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementations brings together some of the top IoT security experts from around the world who contribute their knowledge regarding different IoT security aspects. It answers the question "How do we use efficient algorithms, models, and implementations to cover the four important aspects of IoT security, i.e., confidentiality, authentication, integrity, and availability?" The book consists of five parts covering attacks and threats, privacy preservation, trust and authentication, IoT data security, and social awareness. The first part introduces all types of IoT attacks and threats and demonstrates the principle of countermeasures against those attacks. It provides detailed introductions to specific attacks such as malware propagation and Sybil attacks. The second part addresses privacy-preservation issues related to the collection and distribution of data, including medical records. The author uses smart buildings as an example to discuss privacy-protection solutions. The third part describes different types of trust models in the IoT infrastructure, discusses access control to IoT data, and provides a survey of IoT authentication issues. The fourth part emphasizes security issues during IoT data computation. It introduces computational security issues in IoT data processing, security design in time series data aggregation, key generation for data transmission, and concrete security protocols during data access. The fifth and final part considers policy and human behavioral features and covers social-context-based privacy and trust design in IoT platforms as well as policy-based informed consent in the IoT.
Although comprehensive knowledge of cyber-physical systems (CPS) is becoming a must for researchers, practitioners, system designers, policy makers, system managers, and administrators, there has been a need for a comprehensive and up-to-date source of research and information on cyber-physical systems. This book fills that need. Cyber-Physical Systems: From Theory to Practice provides state-of-the-art research results and reports on emerging trends related to the science, technology, and engineering of CPS, including system architecture, development, modeling, simulation, security, privacy, trust, and energy efficiency. It presents the research results of esteemed professionals on cutting-edge advances in cyber-physical systems that include communications, computing, and control. The book consists of eight sections, each containing chapters contributed by leading experts in the field. Each section covers a different area that impacts the design, modeling, and evaluation of CPS, including: Control systems Modeling and design Communications and signal processing Mobility issues Architecture Security issues Sensors and applications Computing issues The book's coverage includes cyber-physical system architecture, mobile cyber-physical systems, cyber-physical systems for intelligent (road/air) transportation, and cyber-physical system applications and standardization. With the CPS field advancing so rapidly, this book is an ideal reference to help researchers, system designers, and practitioners manufacture devices that are compatible with CPS standards. Presenting numerous examples that illustrate practical applications derived from theory, the book is also suitable for use as a textbook in upper undergraduate and graduate-level university courses.
Application as well as detection of different chemicals plays an important role in the progress of modern science and technology. The beauty of various characteristics of materials and the inherent logic behind their working mechanisms can be wisely utilized for sensing different chemicals. The mechanisms as well as performances of different materials viz. carbon nanotube, graphene, metal oxides, biomaterials, luminescent metal-organic frameworks, hydrogels, textiles, quantum dots, ligands, crown ethers etc. for identification of different chemicals has been discussed here. This book would be a valuable reference to select suitable materials for possible use in chemical sensors.
Advanced Optical Instruments and Techniques includes twenty-three chapters providing processes, methods, and procedures of cutting-edge optics engineering design and instrumentation. Topics include biomedical instrumentation and basic and advanced interferometry. Optical metrology is discussed, including point and full-field methods. Active and adaptive optics, holography, radiometry, the human eye, and visible light are covered as well as materials, including photonics, nanophotonics, anisotropic materials, and metamaterials.
Sensor technologies have experienced dramatic growth in recent years, making a significant impact on national security, health care, environmental improvement, energy management, food safety, construction monitoring, manufacturing and process control, and more. However, education on sensor technologies has not kept pace with this rapid development ... until now. Resistive, Capacitive, Inductive, and Magnetic Sensor Technologies examines existing, new, and novel sensor technologies and-through real-world examples, sample problems, and practical exercises-illustrates how the related science and engineering principles can be applied across multiple disciplines, offering greater insight into various sensors' operating mechanisms and practical functions. The book assists readers in understanding resistive, capacitive, inductive, and magnetic (RCIM) sensors, as well as sensors with similar design concepts, characteristics, and circuitry. Resistive, Capacitive, Inductive, and Magnetic Sensor Technologies is a complete and comprehensive overview of RCIM sensing technologies. It takes a unique approach in describing a broad range of sensing technologies and their diverse applications by first reviewing the necessary physics, and then explaining the sensors' intrinsic mechanisms, distinctive designs, materials and manufacturing methods, associated noise types, signal conditioning circuitry, and practical applications. The text not only covers silicon and metallic sensors but also those made of modern and specialized materials such as ceramics, polymers, and organic substances. It provides cutting-edge information useful to students, researchers, scientists, and practicing professionals involved in the design and application of sensor-based products in fields such as biomedical engineering, mechatronics, robotics, aerospace, and beyond.
CESSM 3 Explained provides a detailed and highly illustrated guide to the use of the new civil engineering standard methods of measurements.
Fundamentals and Basic Optical Instruments includes thirteen chapters providing an introductory guide to the basics of optical engineering, instrumentation, and design. Topics include basic geometric optics, basic wave optics, and basic photon and quantum optics. Paraxial ray tracing, aberrations and optical design, and prisms and refractive optical components are included. Polarization and polarizing optical devices are covered, as well as optical instruments such as telescopes, microscopes, and spectrometers.
Since its development in the late 1970s, the Moire Fringe method has become a standard technique for the measurement of the behavior of materials and structures. Edited by one of the co-inventors of the technique, the Handbook of Moire Measurement brings together a series of extended case studies from recognized experts in the field. The emphasis is on the application of the method to real situations, and presents a very readable account of the technique from the point of view of the user. As an introduction to the Moire technique and its variants, this book will be of interest to readers at all levels, but is particularly suitable for undergraduates and graduate students in physics, materials science, and structural and mechanical engineering.
Electronic Noses and Olfaction 2000 reflects the state of progress toward the development and application of electronic instruments called electronic noses (e-noses). These instruments are generally based on arrays of sensors for volatile chemicals with broadly tuned selectivity, coupled to appropriate pattern recognition systems. They are capable of detecting and discriminating a number of different simple and complex odors, such as the headspace of coffee and olive oil, as well as being able to perform simple multicomponent gas analysis. Written by international scientists, engineers, technologists, clinicians, investigators, and instrument manufacturers working in the applied research of e-noses as well as in the applications of olfaction and taste, this volume is essential reading for anyone who wants a review of the latest developments in odor sensors, instrumentation and signal processing, and their medical, agricultural, and food-related applications.
Accuracy in the laboratory setting is key to maintaining the integrity of scientific research. Inaccurate measurements create false and non-reproducible results, rendering an experiment or series of experiments invalid and wasting both time and money. This handy guide to solid, fluid, and thermal measurement helps minimize this pitfall through careful detailing of measurement techniques. Concise yet thorough, Mechanical Variables Measurement-Solid, Fluid, and Thermal describes the use of instruments and methods for practical measurements required in engineering, physics, chemistry, and the life sciences. Organized according to measurement problem, the entries are easy to access. The articles provide equations to assist engineers and scientists who seek to discover applications and solve problems that arise in areas outside of their specialty. Sections include references to more specialized publications for advanced techniques, as well. It offers instruction for a range of measuring techniques, basic through advanced, that apply to a broad base of disciplines. As an engineer, scientist, designer, manager, researcher, or student, you encounter the problem of measurement often and realize that doing it correctly is pivotal to the success of an experiment. This is the first place to turn when deciding on, performing, and troubleshooting the measurement process. Mechanical Variables Measurement-Solid, Fluid, and Thermal leads the reader, step-by-step, through the straits of experimentation to triumph.
The need for both intrinsic and extrinsic fiber optic sensor technologies continues to grow. To meet the demands of this fast expanding applications-driven market, Fiber Optic Sensors, Second Edition presents both the latest advances in fiber optic sensor technology, such as the application of photonic crystal fibers to fiber optic gyroscopes, and recent application opportunities, including the use of fiber optic sensors as a minimally invasive medical treatment. The new edition of this seminal work highlights the development of fiber optic sensors, while providing an overview of current methods for the construction of high-speed and high-capacity fiber optic systems. Two new chapters cover topics such as femtosecond laser illumination inscription and the growing application sector of fiber optic chemical and biological sensors. Adding significant new material, the book continues to provide a progressive history of each sensor type as well as basic principles and fundamental building blocks for practical applications in the electrical aerospace, defense and manufacturing, smart structure, undersea surveillance, medical, and gas and oil industries.
"Reviews operation principles and methods for most Solid Freeform technologies and historical systems data. Illustrates the uses and mechanical details for a number of systems, including JP-System 5, Ballistic Particle Manufacturing, Fused Deposition Modeling, Laminated Object Manufacturing, Stereolithography, and Selective Laser Sintering, and more."
Examines the general nature of systems, systems modeling, and control Covers both linear graphing and bond graphing approaches to systems design and analysis Integrates computational software, using MATLAB and Simulink primarily Includes analytical examples and numerical examples, simulations, case studies, and chapter problems Presents key issues summaries in point form within chapters, for easy reference and recollection
Gives a comprehensive view on the nanomaterials used in plasmonic optical fiber biosensors Includes synthesis, characterization, and usage for detection of different analytes Discusses trends in the design of wavelength-based optical fiber sensors Reviews micro- and nanostructured biosensing devices Explores application of plasmonic sensors in the biosensing field
The course of Machine Elements or Machine Design is one of the most fundamental that students take. It focuses on single components of machines in isolation, but does not frame them in the context of broader assemblies. Existing textbooks used for these courses likewise give very little attention to assemblies, and to the order in which the various machine elements are presented. These texts also contain a considerable amount of supplemental materials that are prerequisites for the course, but are not actually taught in the course. The result is that the books are bloated (often about 1,000 pages or more), and quite expensive. Over Michael Spektor's illustrious career in industry and academia, he has searched for a better resource from which to teach his students, and a way to improve current texts to better reflect the proper structure of how machine elements are presented, and introduce the calculations and design considerations necessary for creating assemblies. The result is this textbook, which is the first text available to students of the course Machine Design (also called Machine Elements) that truly prepares them to meet industry challenges by accelerating their introduction to solving real-life engineering programs. Machine Design Elements and Assemblies methodically describes the material in a way that broadens and deepens the engineering knowledge related to the design of mechanical systems, in a much more concise, less expensive package. FEATURES: The sequence used in the book allows students to address not just the design peculiarities of a single element, but also the design considerations of an assembly. Each chapter involves an element that supports the previous chapter, creating a simple assembly, and more and more complex assembly as the student delves further into the book. This resembles the work of actual engineers in practice. Examples and problems solved in each chapter support this structure as well, resembling typical real-life projects in industry. An affiliated website boasts hundreds of additional examples and problems for students and instructors.
Impedance Spectroscopy is a powerful measurement method used in many application fields such as electro chemistry, material science, biology and medicine, semiconductor industry and sensors. Using the complex impedance at various frequencies increases the informational basis that can be gained during a measurement. It helps to separate different effects that contribute to a measurement and, together with advanced mathematical methods, non-accessible quantities can be calculated. This book is the second in the series Lecture Notes on Impedance Spectroscopy (LNIS). The series covers new advances in the field of impedance spectroscopy including fundamentals, methods and applications. It releases scientific contributions as extended chapters including detailed information about recent scientific research results.
This book helps you understand the basic properties of semiconductor quantum wells and superlattices and describes how they can be utilized for long-wavelength infrared detectors and imaging arrays. Includes 111 illustrations and 237 equations.
This book captures the latest results and techniques for cooperative localization and navigation drawn from a broad array of disciplines. It provides the reader with a generic and comprehensive view of modeling, strategies, and state estimation methodologies in that fields. It discusses the most recent research and novel advances in that direction, exploring the design of algorithms and architectures, benefits, and challenging aspects, as well as a potential broad array of disciplines, including wireless communication, indoor localization, robotics, emergency rescue, motion analysis, etc.
The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operation, and maintenance Data quality assessment Methods to use measured data to estimate irradiance for any surface With a broad range of content that will benefit students and more experienced readers alike, this resource serves as a primer and technical reference that presents the basic terminology and fundamentals for resource assessment. It explores the history of solar radiation instruments and addresses direct normal, global, diffuse, and tilted measurements, as well as the characteristics of instruments used for these measurements. The authors consider methods of assessing the uncertainty of solar measurements and then cover albedo, infrared, net, and spectral irradiance measurements and instrumentation. The book devotes a section to other meteorological instruments, and another to the basics for installing and operating a solar monitoring station. Appendices include information on solar resource assessment modeling and satellite-derived irradiance, along with other useful material. This book's authors are experts who each have more than 30 years of experience developing and operating multiple measurement stations, working with industry to improve radiometry, and conducting various research projects.
Fills the Existing Gap of Mathematics for Data Fusion Data fusion (DF) combines large amounts of information from a variety of sources and fuses this data algorithmically, logically and, if required intelligently, using artificial intelligence (AI). Also, known as sensor data fusion (SDF), the DF fusion system is an important component for use in various applications that include the monitoring of vehicles, aerospace systems, large-scale structures, and large industrial automation plants. Data Fusion Mathematics: Theory and Practice offers a comprehensive overview of data fusion, and provides a proper and adequate understanding of the basic mathematics directly related to DF. The material covered can be used for evaluation of the performances of any designed and developed DF systems. It tries to answer whether unified data fusion mathematics can evolve from various disparate mathematical concepts, and highlights mathematics that can add credibility to the data fusion process. Focuses on Mathematical Tools That Use Data Fusion This text explores the use of statistical/probabilistic signal/image processing, filtering, component analysis, image algebra, decision making, and neuro-FL-GA paradigms in studying, developing and validating data fusion processes (DFP). It covers major mathematical expressions, and formulae and equations as well as, where feasible, their derivations. It also discusses SDF concepts, DF models and architectures, aspects and methods of type 1 and 2 fuzzy logics, and related practical applications. In addition, the author covers soft computing paradigms that are finding increasing applications in multisensory DF approaches and applications. This book: Explores the use of interval type 2 fuzzy logic and ANFIS in DF Covers the mathematical treatment of many types of filtering algorithms, target-tracking methods, and kinematic DF methods Presents single and multi-sensor tracking and fusion mathematics Considers specific DF architectures in the context of decentralized systems Discusses information filtering, Bayesian approaches, several DF rules, image algebra and image fusion, decision fusion, and wireless sensor network (WSN) multimodality fusion Data Fusion Mathematics: Theory and Practice incorporates concepts, processes, methods, and approaches in data fusion that can help you with integrating DF mathematics and achieving higher levels of fusion activity, and clarity of performance. This text is geared toward researchers, scientists, teachers and practicing engineers interested and working in the multisensor data fusion area.
Planning, measuring, and paying attention to details form the basis for all successful engineering operations. Measurements pervade everything we do and must be viewed from a systems perspective. A comprehensive all-encompassing guide to measurements, Handbook of Measurements: Benchmarks for Systems Accuracy and Precision focuses on high-level engineering computations essential for benchmarks and technical innovation. The book uses a systems framework and a technically rigorous approach to systems linking of measurements-an approach that sets it apart from other handbooks. The popular saying "measure twice and cut once" bears out the importance of measurements in human endeavors. This handbook covers both qualitative and quantitative topics of measurement. It opens with a chapter on the fundamentals of measurement and includes coverage of human-centric measurements, such as measurement of personnel productivity and contractor performance. It concludes with three appendices on measurement, references, conversion factors, equations, formulas, and statistics for measurement. It is well understood that humans cannot manage anything that cannot be measured. All elements involved in our day-to-day decision making involve some form of measurement, whether in the kitchen, retail, sports, service operations, geographical exploration, health care delivery, worker productivity, clothing design, engineering product design, or space craft launching. Measuring an attribute of a system and then analyzing it against some standard, some specification, some best practice, or some benchmark empower a decision maker to take appropriate and timely actions. This book gives you a guide for sustainable practices to ensure accurate measurements, helping you make decisions backed by metrics.
Integrating physical modeling, mathematical analysis, and computer simulation, Instrumentation Design Studies explores a wide variety of specific and practical instrumentation design situations. The author uses MATLAB (R) and SIMULINK (R) for dynamic system simulation, Minitab (R) for statistical applications, and Mathcad for general engineering computations. Rather than consult the extensive manuals of these software packages, readers can access handy, sharply focused material in the appendices to assist in comprehension. After introducing the techniques behind the design of experiments (DOE), the book discusses several technologies for implementing vibration isolation, the design of a high-accuracy pressure transducer, and the use of cold-wire thermometers for measuring rapidly fluctuating fluid temperatures. It then focuses on a basic piezoelectric actuator that provides translational motions up to about 1mm full scale with nanometer resolution, before covering instruments used to measure the viscosity of liquids as well as two special classes of microphones (infrasonic and ultrasonic) and their important specialized applications. The book also presents statistical tools, such as hypothesis testing and confidence intervals, for experiments; the design and applications of thrust stands for measuring vector forces and torques; and the analysis and simulation of a shock calibrator. It concludes with a discussion of how shock testing machines can help reduce or prevent mechanical failures. Spanning system dynamics, measurement, and control, this book addresses the needs of practicing engineers working in instrumentation fields. It focuses on instruments for various applications, from geophysics to mechanical and aerospace engineering.
This book details the latest developments in sensing technology and its application in food industry. It explores the opportunities created by the chemical and biosensing technology and improvements performed in recent years for better food quality, better food safety, better food processing and control, and better input for food industry. The chapters in this book have been divided into three sections: basic principles of chemical and biosensing technology, biosensors for food processing and control, and biosensors for food safety.
Localization of transmitters and receiving sensors is achieved by measuring radiation emitted by a source to a set of sensors, which are either on a definite pattern, known as an array, or one randomly located at irregular points, known as a distributed sensor array. This book discusses how to determine the position of sensors and transmit information to a central node, also known as the anchor node. Time of arrival, time difference of arrival, frequency time of arrival, and strength of received signal are also covered. The reader will learn effective algorithms and implementation, as well as numerical examples, with the inclusion of lab experiments. It discusses time synchronization, including the rotating laser beam to measure distance, in detail. |
You may like...
Advances in MEMS and Microfluidic…
Rajeev Kumar Singh, Rakesh Kumar Phanden, …
Hardcover
R6,253
Discovery Miles 62 530
Smart External Stimulus-Responsive…
Mahdi Karimi, Parham Sahandi Zangabad, …
Hardcover
R2,991
Discovery Miles 29 910
Predicting, Monitoring, and Assessing…
Nikolay Viktorovich Baranovskiy
Hardcover
R6,798
Discovery Miles 67 980
Carbon Nanotubes in Drug and Gene…
Mahdi Karimi, Amir Ghasemi, …
Hardcover
R2,979
Discovery Miles 29 790
GIS Applications in the Tourism and…
Somnath Chaudhuri, Nilanjan Ray
Hardcover
R5,355
Discovery Miles 53 550
Major Applications of Carbon Nanotube…
Balwinder Raj, Mamta Khosla, …
Hardcover
R5,357
Discovery Miles 53 570
|