![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical)
This book provides authentic and comprehensive information on the concepts, methods, functional details and applications of nano-emulsions. Following an introduction to the applications of nanotechnology in the development of foods, it elaborates on food-grade nano-emulsion and their significance, discusses various techniques and methods for producing food-grade nano-emulsion, and reviews the main ingredient and component of food-grade nano-emulsions. Further, the book includes a critical review of the engineering aspect of fabricating food-grade nano-emulsions and describe recently developed vitamin encapsulated nano-systems. In closing, it discuss the challenges and opportunities of characterizing nano-emulsified systems, the market risks and opportunities of nano-emulsified foods, and packaging techniques and safety issues - including risk identification and risk management - for nano-foods. The book offers a unique guide for scientists and researchers working in this field. It will also help researchers, policymakers, industry personnel, journalists and the general public to understand food nanotechnology in great detail.
Advances in Microbial Physiology, Volume 70 continues the long tradition of topical, important, cutting-edge reviews in microbiology with this new volume covering a variety of topics, including Bacterial Hemoprotein Sensors of NO: H-NOX and NosP, Manganese in Marine Microbiology, Nutritional Immunity and Fungal Pathogenesis: The Struggle for Micronutrients at the Host-Pathogen Interface, Metal-Based Combinations that Target Protein Synthesis by Fungi, Transition Metal Homeostasis in Streptococcus Pyogenes and Streptococcus Pneumoniae, Copper and Antibiotics: Discovery, Modes of Action, and Opportunities for Medicinal Applications, Metal Resistance and Its Association with Antibiotic Resistance, and The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity.
This book provides information about the nontarget nature of selected soil enzymes which are implicated in soil fertility and health and the methods for their assay. It also shows how these soil enzymes are affected by two different pesticides, buprofezin and acephate, used both extensively and intensively in modern agriculture.
This book gives an overview on techniques and future perspectives of various aspects of waste biomass management. It also presents the economic and environmental evaluation, and also the monetary value-benefits and sustainability of the different processes. Recycling processes of lignocellulosic biomass from palm oil mill waste are covered, as well as from sugar industry waste and agriculture waste. It also includes thermal and non-thermal technologies for resource recovery from waste biomass. Challenges in the reuse and recycling of waste biomass are discussed, i.e., the hygienic safety in biomass management and bioremediation technologies for conversion into valuable products. The book is aiming at scientists, researchers and students alike, who are working in the research areas pertaining to waste management
This book presents a compilation of case studies from different countries on achieving agricultural sustainability. The book stresses that, in order to meet the needs of our rapidly growing population, it is imperative to increase agricultural productivity. If global food production is to keep pace with an increasing population, while formulating new food production strategies for developing countries, the great challenge for modern societies is to boost agricultural productivity. Today, the application of chemicals to enhance plant growth or induced resistance in plants is limited due to the negative effects of chemical treatment and the difficulty of determining the optimal concentrations to benefit the plant. In the search for alternative means to solve these problems, biological applications have been extensively studied. Naturally occurring plant-microbe-environment interactions are utilized in many ways to enhance plant productivity. As such, a greater understanding of how plants and microbes coexist and benefit one another can yield new strategies to improve plant productivity in the most sustainable way. Developing sustainable agricultural practices requires understanding both the basic and applied aspects of agriculturally important microorganisms, with a focus on transforming agricultural systems from being nutrient-deficient to nutrient-rich. This work is divided into two volumes, the aim being to provide a comprehensive description and to highlight a holistic approach, respectively. Taken together, the two volumes address the fundamentals, applications, research trends and new prospects of agricultural sustainability. Volume one consists of two sections, with the first addressing the role of microbes in sustainability, and the second exploring beneficial soil microbe interaction in several economically important crops. Section I elucidates various mechanisms and beneficial natural processes that enhance soil fertility and create rhizospheric conditions favourable for high fertility and sustainable soil flora. It examines the mechanism of action and importance of rhizobacteria and mycorrhizal associations in soil. In turn, section II presents selected case studies involving economically important crops. This section explains how agriculturally beneficial microbes have been utilized in sustainable cultivation with high productivity. Sustainable food production without degrading the soil and environmental quality is a major priority throughout the world, making this book a timely addition. It offers a comprehensive collection of information that will benefit students and researchers working in the field of rhizospheric mechanisms, agricultural microbiology, biotechnology, agronomy and sustainable agriculture, as well as policymakers in the area of food security and sustainable agriculture.
Microbial infections still represent one of the major causes of mortality and morbidity worldwide. Irrational usage of antimicrobials has lead to increased resistance, causing clinical, social and economical disabilities. Therefore, one of the major challenges of scientists is to develop novel alternative methods to handle infections and reduce resistance and other side effects produced by the actual therapies. The aim of this book is to offer a perspective on novel approaches to handle infections by using naturally-derived products in order to modulate the virulence of pathogens, without the risk of developing resistance. We intend to highlight the utility of microbial, vegetal and animal-derived compounds with potential antimicrobial activity by exploiting their effect on microbial virulence. Furthermore, this book aims to reveal the potential to assimilate recent bio-technological findings, like the usage of nanotechnology as efficient shuttles for stabilizing, improved targeting and the controlled release of natural products in order to efficiently fight infections.
The critically acclaimed laboratory standard for more than forty
years, Methods in Enzymology is one of the most highly respected
publications in the field of biochemistry. Since 1955, each volume
has been eagerly awaited, frequently consulted, and praised by
researchers and reviewers alike. More than 285 volumes have been
published (all of them still in print) and much of the material is
relevant even today--truly an essential publication for researchers
in all fields of life sciences.
Antimicrobial Stewardship (AMS), Volume Two includes the experience of ESGAP workshops and courses on antibiotic stewardship since 2012. It combines clinical and laboratory information about AMS, with a focus on human medicine. The ESCMID study group on antibiotic policies (ESGAP) is one of the most productive groups in the field, organizing courses and workshops. This book is an ideal tool for the participants of these workshops. With short chapters (around 1500 words) written on different topics, the authors insisted on the following points: A 'hands on', practical approach, tips to increase success, a description of the most common mistakes, a global picture (out- and inpatient settings, all countries) and a short list of 10-20 landmark references.
This book intends to provide information about detection and health effects due to bacteria, fungi and viruses in indoor environments. The book will cover also information about preventive and protective measures to avoid health-hazardous. Case studies will be also addressed to enrich the book with the expertise of each invited author. The book also intends to fill a gap regarding information about all biologic agents, since most of the books available are dedicated to only one type of microorganisms. For various different biologic agents and metabolites this book will compile information about indoors presence, detection methods, exposure assessment and health effects. Several problems regarding the exposure of biologic agents will be presented through case studies, and also the implementation of preventive and protective measures to avoid/minimize exposure. Besides, all the book will focus on occupational health and/or public health point of view.
This book covers the applications of fungi used in biorefinery technology. As a great many different varieties of fungal species are available, the text focuses on the various applications of fungi for production of useful products including organic acids (lactic, citric, fumaric); hydrolytic enzymes (amylase, cellulases, xylanases, ligninases, lipases, pectinases, proteases); advanced biofuels (ethanol, single cell oils); polyols (xylitol); single cell protein (animal feed); secondary metabolites; and much more.
This book provides an up-to-date overview of the architecture and biosynthesis of bacterial and archaeal cell walls, highlighting the evolution-based similarities in, but also the intriguing differences between the cell walls of Gram-negative bacteria, the Firmicutes and Actinobacteria, and the Archaea. The recent major advances in this field, which have brought to light many new structural and functional details, are presented and discussed. Over the past five years, a number of novel systems, e.g. for lipid, porin and lipopolysaccharide biosynthesis have been described. In addition, new structural achievements with periplasmic chaperones have been made, all of which have revealed amazing details on how bacterial cell walls are synthesized. These findings provide an essential basis for future research, e.g. the development of new antibiotics. The book's content is the logical continuation of Volume 84 of SCBI (on Prokaryotic Cytoskeletons), and sets the stage for upcoming volumes on Protein Complexes.
This book aims at providing a brief but broad overview of biosignatures. The topics addressed range from prebiotic signatures in extraterrestrial materials to the signatures characterising extant life as well as fossilised life, biosignatures related to space, and space flight instrumentation to detect biosignatures either in situ or from orbit. The book ends with philosophical reflections on the implications of life elsewhere. In the 15 chapters written by an interdisciplinary team of experts, it provides both detailed explanations on the nature of biosignatures as well as useful case studies showing how they are used and identified in ancient rocks, for example. One case study addresses the controversial finding of traces of fossil life in a meteorite from Mars. The book will be of interest not only to astrobiologists but also to terrestrial paleontologists as well as any reader interested in the prospects of finding a second example of life on another planet.
This book cover all types of microbe based polymers and their application in diverse sectors with special emphasis on agriculture. It collates latest research, methods, opinion, perspectives, and reviews dissecting the microbial origins of polymers, their production, design, and processing at industrial level, as well as improvements for specific industrial applications. Book also discusses recent advances in biopolymer production and their modification for amplifying the value. In addition, understanding of the microbial physiology and optimal conditions for polymer production are also explained. This compilation of scientific chapters on principles and practices of microbial polymers fosters the knowledge transfer among scientific communities, industries, and microbiologist and serves students, academicians, researchers for a better understanding of the nature of microbial polymers and application procedure for sustainable ecosystem
This book discusses recent advances in our understanding of the role of oxidants in microbial pathophysiology, providing valuable insights into the complex role of reactive oxygen species (ROS) in host-microbial interactions. The various chapters take readers through the function of ROS in infections ranging from viral to bacterial, and describe how microorganisms have developed complex strategies to not only avoid contact with phagocyte-derived oxidants, but also protect themselves from injury when oxidants are encountered. Featuring the latest research in the field of microbial diseases, this timely book is a ready reference for scientists looking to develop new anti-microbial drugs.
This book presents the latest results related to photocatalytic inactivation/killing of microorganisms, which is a promising alternative disinfection method that produces less or even no disinfection byproduct. The book is divided into 13 chapters, which introduce readers to the latest developments in the photocatalytic disinfection of microorganisms, examine essential photocatalytic (PC) and photoelectrocatalytic (PEC) disinfection studies, and forecast and make recommendations for the further development of PC and PEC disinfection. Bringing together contributions by various leading research groups worldwide, it offers a valuable resource for researchers and the industry alike, as well as the general public. Taicheng An, PhD, is Chair Professor and Director at the Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China. Huijun Zhao, PhD, is Chair Professor and Director at the Centre for Clean Environment and Energy & Griffith School of Environment, Griffith University, Australia. Po Keung Wong, PhD, is a Professor at the School of Life Sciences, the Chinese University of Hong Kong, Hong Kong SAR, China.
Bio-inoculants in Horticultural Crops, Volume Three in the Advances in Bio-inoculant Sciences series, focuses on real-time application of novel microbes that have been proven to enhance and improve plant health and productivity. The book provides comprehensive information on a range of biological approaches and mechanisms for the improvement of horticultural crops being practiced in different production systems. Covering the subject from historical developments to recent advances in microbial interventions, it addresses the potential role and bio-mechanism of bio-inoculants for challenges including stress tolerance, production, commercialization, application methodology, challenges and future roadmap for sustainable production system of horticultural crops. This volume will be useful to scientists, academicians, and students of horticulture, agriculture microbiology, plant protection, and other related subjects.
This book provides a comprehensive review of recent innovations in food science that are being used to tackle the challenges of food safety, nutritional security and sustainability. With a major focus on developing nations, like India, the book is divided into four main sections. The first section provides an overview of the food industry, while the second explores food safety in various segments, with an interesting account of street food safety - an important, yet often neglected aspect for safety parameters. The third section, on nutritional security and sustainability, explores various ways of maximizing nutrition and optimizing waste management in the food industry. The book closes with a section on emerging technologies and innovations, which introduces readers to some of the latest technologies in the food industry, including advances in food processing, packaging, nanotechnology, etc. The topics have been divided into 25 different chapters, which offer a diverse blend of perspectives on innovations in the developing world. Ideally suited for students and researchers in the food sciences, the book is also an interesting read for industry experts in Food Science and Technology.
Begomoviruses are one of the most interesting plant viruses to study for basic and applied research as they cause huge economic losses to agriculture industries and farmers all over the world. They belong to family Geminiviridae and are emergent plant viral pathogens which cause diseases in various crops in the tropical and subtropical regions. They are transmitted by the whitefly (B. tabaci) and have either one (monopartite DNA-A) or two (bipartite DNA-A and DNA-B) genomic components. DNA-A and DNA-B are of ~2600 - 2800 nucleotides each. A number of serious diseases of cultivated crops of the Fabaceae, Malvaceae, Solanaceae and Cucurbitaceae families are caused by Begomoviruses which are considered as threat to their cultivation in many countries. Accurate diagnosis is important for successful diseases management, since plants infected by Begomovirus do not recover, suffer serious yield losses and act as further sources of inoculum, which is then picked up and spread by their vector whitefly (B. tabaci). Reports of occurrence of new viruses and re-emergence of several known viruses in new niches have become regular event. In such a dynamic system, growth of several crop species relies on an accurate diagnosis, management and better understanding of the biology of the casual virus. This is crucial to evolve appropriate control practices and to prevent the virus infection. Researchers have achieved considerable progress in characterization, detection and management of virus on different crop species in the last decade. This book covers latest information in diagnosis of begomoviruses in the present scenario and explores the new vistas in the field of genomics and proteomics. Chapters in Section 1 illustrates the occurrence, genome organisation, transmission and diagnostics of begomoviruses. It also details the diseases caused by begomoviruses on different crops, detection techniques and management strategies in support of research findings by presentation of data, graphics, figures and tables. Section 2 is a chapterwise collection of occurrence, diversity and status of begomoviruses in Asian Africa counties where the diseases are most prevalent. This book will provide wide opportunity to the readers to have complete information and status of begomovirus in Asia and Africa. This will be useful resource for researchers and extension workers involved in the begomvirus disease diagnosis and molecular biology. Expert detection, accurate diagnosis and timely management play a significant role in keeping plants free from pathogens. In this book expert researchers share their research knowledge and literature which are vital towards the diagnosis of begomoviruses, addressing traditional plant pathology techniques as well as advanced molecular diagnostic approach. The book deals with the economically important crops including fruits, vegetables along with challenges in crop protection against diseases caused by begomovirus. This will be resourceful and handy for researcher, practitioners and also students.
This book reviews the current concepts in biofilm formation and its implications in human health and disease. The initial chapters introduce the mechanisms of biofilm formation and its composition. Subsequently, the chapters discuss the role of biofilm in acute and chronic infections. It also explores the pivotal role of both innate and adaptive immunity on the course of biofilm infection. In addition, the book elucidates the bacterial biofilm formation on implantable devices and the current approaches to its treatment and prevention. It analyzes the possible relationship between antimicrobial resistance and biofilm formation. Finally, the book also summarizes the current state-of-the-art therapeutic approaches for preventing and treating biofilms. This book is a useful resource for researchers in the field of microbiology, clinical microbiology, and also medical practitioners.
Imaging Bacterial Molecules, Structures and Cells, the latest volume in the Methods in Microbiology series, provides comprehensive, cutting-edge reviews of current and emerging technologies in the field of clinical microbiology. The book features a wide variety of state-of-the art methods and techniques for the diagnosis and management of microbial infections, with chapters authored by internationally renowned experts. This particular volume focuses on current techniques, such as MALDI-TOF mass spectroscopy and molecular diagnostics, along with newly emerging technologies, such as host-based diagnostics and next generation sequencing.
This Volume presents methods for analysing and quantifying petroleum, hydrocarbons and lipids, based on their chemical and physical properties as well as their biological effects. It features protocols for extracting hydrocarbons from solid matrices, water and air, and a dedicated chapter focusing on volatile organic compounds. Several approaches for separating and detecting diverse classes of hydrocarbons and lipids are described, including: (tandem) gas chromatography (GC) coupled with mass spectrometry (MS) or flame-ionisation detection, Fourier-transform induction-coupled-resonance MS, and fluorescence-based techniques. The book details high-performance liquid chromatography MS for microbial lipids, as well as a combination of techniques for naphthenic acids. Two chapters focus on quantifying bioavailable hydrocarbon fractions by using cyclodextrin sorbents and bacterial bioreporters, respectively, while a closing chapter explains how compound-specific stable-isotope analysis can be used to measure the fate of hydrocarbons in the environment. Hydrocarbon and Lipid Microbiology Protocols There are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes. |
![]() ![]() You may like...
Plant RNA Viruses - Molecular…
Rajarshi Kumar Gaur, Basavaprabhu L. Patil, …
Paperback
R3,597
Discovery Miles 35 970
Unravelling Plant-Microbe Synergy
Dinesh Chandra, Pankaj Bhatt
Paperback
R3,556
Discovery Miles 35 560
Microbial Biomolecules - Emerging…
Ajay Kumar, Muhammad Bilal, …
Paperback
R3,838
Discovery Miles 38 380
Recent Trends in Biofilm Science and…
Manuel Simoes, Anabel Borges, …
Paperback
R3,136
Discovery Miles 31 360
Microbial Management of Plant Stresses…
Ajay Kumar, Samir Droby
Paperback
R4,145
Discovery Miles 41 450
Environmental and Health Management of…
Mohammad Hadi Dehghani, Rama Rao Karri, …
Paperback
R2,635
Discovery Miles 26 350
Advanced Technologies in Wastewater…
Angelo Basile, Alfredo Cassano, …
Paperback
R4,710
Discovery Miles 47 100
|