![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical)
This volume presents a comprehensive perspective of the biopesticides Bacillus thuringiensis and Lysinibacillus sphaericus, from their basic biology to agriculture, forestry and public-health applications. It covers their ecology, virulence factors, and genetic characterization. The topics related to agriculture and forestry include mode of action, receptors of insect pests, and heterologous expression of toxins in insect cells and plants. Public-health researchers will find information on vector control programs with an emphasis on the Neotropical region. The book also discusses new products and the global market.
This volume focuses on antibiotics research, a field of topical significance for human health due to the worrying increase of nosocomial infections caused by multi-resistant bacteria. It covers several basic aspects, such as the evolution of antibiotic resistance and the influence of antibiotics on the gut microbiota, and addresses the search for novel pathogenicity blockers as well as historical aspects of antibiotics. Further topics include applied aspects, such as drug discovery based on biodiversity and genome mining, optimization of lead structures by medicinal chemistry, total synthesis and drug delivery technologies. Moreover, the development of vaccines as a valid alternative therapeutic approach is outlined, while the importance of epidemiological studies on important bacterial pathogens, the problems arising from the excessive use of antibiotics in animal breeding, and the development of innovative technologies for diagnosing the "bad bugs" are discussed in detail. Accordingly, the book will appeal to researchers and clinicians alike.
This new edition provides a comprehensive look at the molecular genetics and biochemical basis of fungal biology, covering important model organisms such as Aspergilli while also integrating advances made with zygomycetes and basidiomycetes. This book groups a total of 15 chapters authored by expert scholars in their respective fields into four sections. Five chapters cover various aspects of gene expression regulation. These range from regulation in organismal interactions between parasitic fungi and their host plant, heavy metal stress and global control of natural product genes to conidiation and regulation through RNA interference. Two chapters are dedicated to signal transduction, highlighting MAP-kinase-dependent signaling and heterotrimeric G-proteins. Fungal carbohydrates are the subject of the third section, which addresses both polymeric cell wall carbohydrates and trehalose as an important, low molecular weight carbohydrate. The fourth section emphasizes the metabolism of major elements (carbon, nitrogen, sulfur) and critical cellular pathways for primary and secondary products.
Michael Lebuhn, Stefan Weiss, Bernhard Munk, Georg M. Guebitz Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control Veronika Dollhofer, Sabine Marie Podmirseg, Tony Martin Callaghan, Gareth Wyn Griffith & Katerina Fliegerova Anaerobic Fungi and their Potential for Biogas Production Bianca Froeschle, Monika Heiermann, Michael Lebuhn, Ute Messelhausser, Matthias Ploechl Hygiene and Sanitation in Biogas Plants Charles-David Dube and Serge R. Guiot Direct Interspecies Electron Transfer in Anaerobic Digestion: A Review Simon K.-M. R. Rittmann A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems Manfred Lubken, Pascal Kosse, Konrad Koch, Tito Gehring, Marc Wichern Influent Fractionation for Modeling Continuous Anaerobic Digestion Processes Fermoso, F. G, van Hullebusch, E. D, Guibaud, G, Collins, G, Svensson, B. H, Carliell-Marquet, C, Vink, J.P.M, Esposito, G, Frunzo, L Fate of Trace Metals in Anaerobic Digestion
Vents and seeps are the epitome of life in extreme environments, but there is much more to these systems than just black smokers or hydrocarbon seeps. Many other ecosystems are characterized by moving fluids and this book provides an overview of the different habitats, their specific conditions as well as the technical challenges that have to be met when studying them. The book provides the current state of the art and will be a valuable resource for everybody that has an interest in such environments.
Retroviruses comprise a diverse family of enveloped RNA viruses, remarkable for their use of reverse transcription of viral RNA into linear double stranded DNA during replication and the subsequent integration of this DNA into the genome of the host cell. Members of this family include important pathogens such as HIV-1, feline leukemia, and several cancer-causing viruses. However, interest in these viruses extends beyond their disease-causing capabilities. For example, research in this area led to the discovery of oncogenes, a major advance in the field of cancer genetics. Studies of retroviruses have contributed greatly to our understanding of mechanisms that regulate eukaryotic gene expression. In addition, retroviruses are proving to be valuable research tools in molecular biology and have been used successfully in gene therapy (e.g. to treat X-linked severe combined immunodeficiency). Written by the top retroviral specialists, this book reviews the genomics, molecular biology, and pathogenesis of these important viruses, comprehensively covering all the recent advances. Topics include: host and retroelement interactions * endogenous retroviruses * retroviral proteins and genomes * viral entry and uncoating * reverse transcription and integration * transcription * splicing and RNA transport * pathogenesis of oncoviral infections * pathogenesis of immunodeficiency virus infections * retroviral restriction factors, molecular vaccines, and correlates of protection * gammaretroviral and lentiviral vectors * non-primate mammalian and fish retroviruses * simian exogenous retroviruses * and HTLV and HIV. It is essential reading for every retrovirologist and it is a recommended text for all virology and molecular biology laboratories.
The type I interferon (IFN) signaling pathway is well recognized as a pathway activated by viral infections. It is activated by a variety of microbial pattern recognition receptors including the Toll-like receptors, NOD-like receptors and several cytosolic receptors. Activation of the type I IFN pathway leads to the production of both antiviral factors and products that influence immune cell function. More recently it has been shown that bacteria are also capable of activating this pathway. Bacterial Activation of Type I Interferons reviews both the current understanding of how different bacterial species are able to activate this pathway as well as the influence type I IFNs have on the outcome to infection. Several different bacterial species are covered, spanning Gram positive and Gram negative, intracellular, extracellular, and different host infection sites. An introduction to the pathogenesis of each organism is provided, and the signaling molecules involved in the activation of the type I IFN pathway and the role it plays in animal infection models are also covered.
Streptococcus Pneumoniae: Molecular Mechanisms of Host-Pathogen Interactions provides a comprehensive overview of our existing knowledge on Streptococcus pneumoniae antibiotic resistance, dissemination, and pathogenesis, including immunology. It presents a state-of-the-art overview of the implications of existing data, along with the areas of research that are important for future insights into the molecular mechanisms of pneumococcal infections and how to combat these infections. Users will find a timely update on the topic, as the dramatic increase in antibiotic resistance pneumoniae cases and limitations of the currently available pneumoniae vaccines are creating new concerns on these gram-positive bacteria that are endowed with a high virulence potential, and are the most common etiologic agent of respiratory and life-threatening invasive diseases.
Yeast Protocols, Third Edition presents up-to-date advances in research using yeasts as models. Chapters cover topics such as basic protocols in yeast culture and genomic manipulation, protocols that study certain organelles such as mitochondria and peroxisomes and their functions in autophagy and assays commonly used in yeast-based studies that can be adapted to other organisms. As the first sequenced living organism, budding yeast S. cerevisiae and other model yeasts have helped greatly in life science research. The easy switch between the haploid and diploid state makes yeast a paradigm of genetic manipulation. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Yeast Protocols, Third Edition seeks to serve both professionals and novices with newly-developed protocols to study this essential model organism.
Microorganisms play an important role in the maintenance of the ecosystem structure and function. Bacteria constitute the major part of the microorganisms and possess tremendous potential in many important applications from environmental clean up to the drug discovery. Much advancement has been taken place in the field of research on bacterial systems. This book summarizes the experimental setups required for applied microbiological studies. Important background information, representative results, step by step protocol in this book will be of great use to the students, early career researchers as well as the academicians. The book describes many experiments covering the basic microbiological experiments to the applications of microbial systems for advanced research. Researchers in any field who utilize bacterial systems will find this book very useful. In addition to microbiology and bacteriology, this book will also find useful in molecular biology, genetics, and pathology and the volume should prove to be a valuable laboratory resource in clinical and environmental microbiology, microbial genetics and agricultural research. Unique features * Easy to follow by the users as the experiments have been written in simple language and step-wise manner. * Role of each reagents to be used in each experiment have been described which will help the beginners to understand quickly and design their own experiment. * Each experiment has been equipped with the coloured illustrations for proper understanding of the concept. * Trouble-shootings at the end of each experiment will be helpful in overcoming the problems faced by the users. * Flow-chart of each experiment will quickly guide the users in performing the experiments.
The cryosphere stands for environments where water appears in a frozen form. It includes permafrost, glaciers, ice sheets, and sea ice and is currently more affected by Global Change than most other regions of the Earth. In the cryosphere, limited water availability and subzero temperatures cause extreme conditions for all kind of life which microorganisms can cope with extremely well. The cryosphere's microbiota displays an unexpectedly large genetic potential, and taxonomic as well as functional diversity which, however, we still only begin to map. Also, microbial communities influence reaction patterns of the cryosphere towards Global Change. Altered patterns of seasonal temperature fluctuations and precipitation are expected in the Arctic and will affect the microbial turnover of soil organic matter (SOM). Activation of nutrients by thawing and increased active layer thickness as well as erosion renders nutrient stocks accessible to microbial activities. Also, glacier melt and retreat stimulate microbial life in turn influencing albedo and surface temperatures. In this context, the functional resilience of microbial communities in the cryosphere is of major interest. Particularly important is the ability of microorganisms and microbial communities to respond to changes in their surroundings by intracellular regulation and population shifts within functional niches, respectively. Research on microbial life exposed to permanent freeze or seasonal freeze-thaw cycles has led to astonishing findings about microbial versatility, adaptation, and diversity. Microorganisms thrive in cold habitats and new sequencing techniques have produced large amounts of genomic, metagenomic, and metatranscriptomic data that allow insights into the fascinating microbial ecology and physiology at low and subzero temperatures. Moreover, some of the frozen ecosystems such as permafrost constitute major global carbon and nitrogen storages, but can also act as sources of the greenhouse gases methane and nitrous oxide. In this book we summarize state of the art knowledge on whether environmental changes are met by a flexible microbial community retaining its function, or if the altered conditions also render the community in a state of altered properties that affect the Earth's element cycles and climate. This book brings together research on the cryosphere's microbiota including permafrost, glaciers, and sea ice in Arctic and Antarctic regions. Different spatial scales and levels of complexity are considered, spanning from ecosystem level to pure culture studies of model microbes in the laboratory. It aims to attract a wide range of parties with interest in the effect of climate change and/or low temperatures on microbial nutrient cycling and physiology.
This volume presents a list of cutting-edge protocols for the study of CRISPR-Cas defense systems and their applications at the genomic, genetic, biochemical and structural levels. CRISPR: Methods and Protocols guides readers through techniques that have been developed specifically for the analysis of CRISPR-Cas and techniques adapted from standard protocols of DNA, RNA and protein biology. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, CRISPR: Methods and Protocols provides a broad list of tools and techniques to study the interdisciplinary aspects of the prokaryotic CRISPR-Cas defense systems.
This Volume presents methods for quantifying microbial populations and characterising microbial communities by extracting and analysing biomarkers such as RNA, DNA and lipids. The chapters cover a wide range of topics, including: cell separation from oil-rich environments, enumeration of hydrocarbon degraders and sulphate reducers using most-probable-number techniques, and quantification by means of real-time PCR. A variety of molecular methods are described for microbial community profiling, such as phospholipid fatty acid analysis, DGGE, T-RFLP and SSCP. One chapter examines high-throughput sequencing, and provides important information on the associated procedures required for thorough data analysis. A further chapter is devoted to the characterisation of protistan communities, while the closing chapter describes multiplex fluorescent antibody microarrays for detecting microbial biomarkers. Hydrocarbon and Lipid Microbiology Protocols There are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
The increasing worldwide demand for energy, combined with diminishing fossil fuel reserves and concerns about climate change, have stimulated intense research into the development of renewable energy sources, in particular, microbial biofuels. For a biofuel to be commercially viable, the production processes, yield, and titer have to be optimized, which can be achieved through the use of microbial cell factories. Using multidisciplinary research approaches, and through the application of diverse biotechnologies (such as enzyme engineering, metabolic engineering, systems biology, and synthetic biology), microbial cell factories have begun to yield some very encouraging data and microbial biofuels have a very promising future. In this book, a panel of international experts review the most important hot-topics in this area to provide a timely overview. The production of different biofuel molecules is comprehensively covered, including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids, and fatty acid derivatives from genetically engineered microbes. To enhance biofuel production, special focus is given to the use of metabolic engineering of microbes, including bacteria, yeast, and microalgae. In addition, the book's contributors discuss the current research progress, technical challenges, and future development trends for biofuel production. Essential reading for research scientists, graduate students, and other specialists interested in microbial biofuels, the book is also recommended reading for environmental microbiologists, chemists, and engineers.
This volume is designed to be a resource of proven techniques and approaches for probing the activities of bacterial, eukaryotic, and archaeal RNA polymerases. This book features a collection of in vitro and in vivo technologies that will permit researchers to purify and probe the position and stability of RNA polymerase complexes at different points of the transcription cycle, analyze the various translocations and intermolecular movements associated with catalysis, define recruitment strategies, probe the roles of transcription factors in each stage of the cycle, highlight conserved and disparate fidelity mechanisms, analyze the resultant transcripts, and study coordination of the nascent mRNA synthesis by the RNA polymerase and mRNA translation by the ribosome. Written in the highly successful Methods of Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubles troubleshooting and avoiding known pitfalls. Practical and timely, Bacterial Transcriptional Controls: Methods and Protocols highlights the breadth and depth of techniques that are likely to continue shaping the transcription community in the future.
Baculovirus Expression Systems and Biopesticides Edited by Michael
L. Shuler, H. Alan Wood, Robert R. Granados, and Daniel A. Hammer
Baculovirus Expression Systems and Biopesticides provides an
integrated perspective on the use of the continually evolving
baculovirus-insect cell system in the production of recombinant
proteins and genetically engineered pesticides. Divided into three
main sections--Developing Effective Virus-Insect Culture Systems,
Bioreactor Design and Scale-Up Issues, and Commercial Application
of Insect Cell Culture--the book, written by highly regarded
editors in the field, describes:
This volume is an up-to-date overview of the physiology of selected pathogenic bacteria. Each chapter is written by experts in the field of that organism.The focus is on biochemistry and physiology but topics of clinical relevance are included.
This volume describes the more relevant secondary metabolites of different fungi with current information on their biosynthesis and molecular genetics. Bolstered with color illustrations and photographs, the book describes the possible application of molecular genetics to directed strain improvement in great detail. The needs for future developments in this field are also discussed at length Written by authorities in the field, "Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites" provides a cutting-edge perspective on fungal secondary metabolism and underlying genetics and is a valuable resource for scientists, researchers, and educators in the field of fungal biology.
Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology. The series contains comprehensive reviews of the most current research in applied microbiology. Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays. Eclectic volumes are supplemented by thematic volumes on various topics, including Archaea and sick building syndrome. Impact factor for 2012: 4.974.
Metagenomics is a rapidly growing field of research that has had a dramatic effect on the way we view and study the microbial world. By permitting the direct investigation of bacteria, viruses, and fungi, irrespective of their culturability and taxonomic identities, metagenomics has changed microbiological theory and methods and has also challenged the classical concept of species. This new field of biology has proven to be rich and comprehensive and is making important contributions in many areas including ecology, biodiversity, bioremediation, bioprospection of natural products, and medicine. This book addresses, in a coherent manner, the diverse and multiple aspects of metagenomics and the multiplicity of its potential applications. Renowned authors from around the world have contributed chapters covering the new theoretical insights, the more recent applications, and the dynamically developing methods of data acquisition and analysis. Topics include: conceptual frameworks * tools and methods * integration of complementary approaches * horizontal gene transfer * analysis of complex microbial communities * public data resources * plant-microbe interactions * bioremediation * industrial bioproducts * archaeal metagenomics * bioprospecting novel genes * the human microbiome * and philosophical themes in metagenomics. The book is essential reading for all researchers currently performing metagenomics studies and it is highly recommended for all students and scientists wishing to increase their understanding of this field.
Published since 1959, "Advances in Applied Microbiology" continues to be one of the most widely read and authoritative review sources in microbiology. The series contains comprehensive reviews of the most current research in applied microbiology. Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays. Eclectic volumes are supplemented by thematic volumes on various
topics, including Archaea and sick building syndrome. Impact factor
for 2012: 4.974. Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field
This book focuses on the use of microorganisms in relation to agriculture, aquaculture and related fields, ranging from biofertilizers to poultry production. The latest innovations are also included to provide insights into the unlimited potentials of microorganisms in these areas.Individual chapters explore topics such as probiotics in poultry, biopurification of wastewater, converting agrowastes into value-added applications and products, rice cultivation, surfactants and bacteriocin as biopreservatives, bioplastics, crop productivity, biofloc, and the production of natural antibiotics. This volume will be of particular interest to scientists, policymakers and industrial practitioners working in the fields of agriculture, aquaculture and public health.
This Microbiology Monographs volume covers the current and most recent advances in genomics and genetics, biochemistry, physiology, and molecular biology of C. reinhardtii. Expert international scientists contribute with reviews on the genome, post-genomic techniques, the genetic toolbox development as well as new insights in regulation of photosynthesis and acclimation strategies towards environmental stresses and other structural and genetic aspects, including applicable aspects in biotechnology and biomedicine. Powerful new strategies in functional genomic and genetics combined with biochemical and physiological analyses revealed new insights into Chlamydomonas biology. |
You may like...
Oral Diseases for the General Dentist…
Orrett E. Ogle, Arvind Babu Rajendra Santosh
Hardcover
R1,945
Discovery Miles 19 450
|