![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Communications engineering / telecommunications > Radar
This book, based on Transport and Urban Development COST Action TU1208, presents the most advanced applications of ground penetrating radar (GPR) in a civil engineering context, with documentation of instrumentation, methods and results. It explains clearly how GPR can be employed for the surveying of critical transport infrastructure, such as roads, pavements, bridges and tunnels and for the sensing and mapping of underground utilities and voids. Detailed attention is also devoted to use of GPR in the inspection of geological structures and of construction materials and structures, including reinforced concrete, steel reinforcing bars and pre/post-tensioned stressing ducts. Advanced methods for solution of electromagnetic scattering problems and new data processing techniques are also presented. Readers will come to appreciate that GPR is a safe, advanced, non destructive and noninvasive imaging technique that can be effectively used for the inspection of composite structures and the performance of diagnostics relevant to the entire life cycle of civil engineering works.
This introductory reference covers the technology and concepts of ultra-wideband (UWB) radar systems. It provides up-to-date information for those who design, evaluate, analyze, or use UWB technology for any application. Since UWB technology is a developing field, the authors have stressed theory and hardware and have presented basic principles and concepts to help guide the design of UWB systems. Introduction to Ultra-Wideband Radar Systems is a comprehensive guide to the general features of UWB technology as well as a source for more detailed information.
This book shows you how to consider AGC, signal thresholding, and range tracking loops from a practical viewpoint.
Understand the theory and function of wireless antennas with this comprehensive guide As wireless technology continues to develop, understanding of antenna properties and performance will only become more critical. Since antennas can be understood as junctions of waveguides, eigenmode analysis--the foundation of waveguide theory, concerned with the unexcited states of systems and their natural resonant characteristics--promises to be a crucial frontier in the study of antenna theory. Foundations of Antenna Radiation Theory incorporates the modal analysis, generic antenna properties and design methods discovered or developed in the last few decades, not being reflected in most antenna books, into a comprehensive introduction to the theory of antennas. This book puts readers into conversation with the latest research and situates students and researchers at the cutting edge of an important field of wireless technology. The book also includes: Detailed discussions of the solution methods for Maxwell equations and wave equations to provide a theoretical foundation for electromagnetic analysis of antennas Recent developments for antenna radiation in closed and open space, modal analysis and field expansions, dyadic Green's functions, time-domain theory, state-of-the-art antenna array synthesis methods, wireless power transmission systems, and more Innovative material derived from the author's own research Foundations of Antenna Radiation Theory is ideal for graduate or advanced undergraduate students studying antenna theory, as well as for reference by researchers, engineers, and industry professionals in the areas of wireless technology.
This book presents a comprehensive discussion of the commercial and military applications of small-aperture radio direction finding. Supported by 154 equations and 108 illustrations, it also details the functional elements of radio-direction finding and a definition of small-aperture DF based on linear wavelength criteria.
"Covers a wide range of topics. Should be both interesting and challenging to the novice. ...a handy guide for those in the field." -- Bulletin of the American Meteorological Society
Engineers will exploit the simplicity and utility of high-frequency predictions of radar cross section (RCS). Managers will appreciate the impact of radar echo reduction measures on overall system performance. Analysts will use the exact and general formulation of the radar echo prediction problem. The reference information and advanced material will be used by students, practising engineers, and radar echo specialists. Upgraded and expanded by over 20% this second edition helps the nonspecialist understand how radar echo requirements may influence design objectives.
This book provides a comprehensive and systematic framework for the design of adaptive architectures, which take advantage of the available a priori information to enhance the detection performance. Moreover, this framework also provides guidelines to develop decision schemes capable of estimating the target position within the range bin. To this end, the readers are driven step-by-step towards those aspects that have to be accounted for at the design stage, starting from the exploitation of system and/or environment information up to the use of target energy leakage (energy spillover), which allows inferring on the target position within the range cell under test.In addition to design issues, this book presents an extensive number of illustrative examples based upon both simulated and real-recorded data. Moreover, the performance analysis is enriched by considerations about the trade-off between performances and computational requirements.Finally, this book could be a valuable resource for PhD students, researchers, professors, and, more generally, engineers working on statistical signal processing and its applications to radar systems.
Compiles the latest techniques for those who design advanced systems for tracking, surveillance and navigation. This second volume expands upon the first with 11 new chapters. The text includes pertinent contributions from leading international experts in this field.
Offering a practical alternative to the conventional methods used in signal processing applications, this book discloses numerical techniques and explains how to evaluate the frequency-domain attributes of a waveform without resorting to actual transformation through Fourier methods. This book should prove of interest to practitioners in any field who may require the analysis, association, recognition or processing of signals, and undergraduate students of signal processing.
Low Power UWB CMOS Radar Sensors deals with the problem of designing low cost CMOS radar sensors. The radar sensor uses UWB signals in order to obtain a reasonable target separation capability, while maintaining a maximum signal frequency below 2 GHz. This maximum frequency value is well within the reach of current CMOS technologies. The use of UWB signals means that most of the methodologies used in the design of circuits and systems that process narrow band signals, can no longer be applied. Low Power UWB CMOS Radar Sensors provides an analysis between the interaction of UWB signals, the antennas and the processing circuits. This analysis leads to some interesting conclusions on the types of antennas and types of circuits that should be used. A methodology to compare the noise performance of UWB processing circuits is also derived. This methodology is used to analyze and design the constituting circuits of the radar transceiver. In order to validate the design methodology a CMOS prototype is designed and experimentally evaluated.
The first book to present a systematic and coherent picture of MIMO radars Due to its potential to improve target detection and discrimination capability, Multiple-Input and Multiple-Output (MIMO) radar has generated significant attention and widespread interest in academia, industry, government labs, and funding agencies. This important new work fills the need for a comprehensive treatment of this emerging field. Edited and authored by leading researchers in the field of MIMO radar research, this book introduces recent developments in the area of MIMO radar to stimulate new concepts, theories, and applications of the topic, and to foster further cross-fertilization of ideas with MIMO communications. Topical coverage includes: Adaptive MIMO radar Beampattern analysis and optimization for MIMO radar MIMO radar for target detection, parameter estimation, tracking, association, and recognition MIMO radar prototypes and measurements Space-time codes for MIMO radar Statistical MIMO radar Waveform design for MIMO radar Written in an easy-to-follow tutorial style, MIMO Radar Signal Processing serves as an excellent course book for graduate students and a valuable reference for researchers in academia and industry.
This book covers the use of SAR for maritime surveillance applications. It provides a comprehensive source of material on the subject, divided into two parts. The first part deals with models and techniques, while the second part is devoted to maritime surveillance applications. Each chapter covers the basic principles, a critical review of the current technology, techniques and applications, and the latest developments in the field. The book begins with an introduction to the topic written by the editors. The following topics are then addressed by an international team of expert authors: scattering models; acquisition modes; SAR polarimetry; ambiguity problems and their mitigation; ship detection; monitoring of intertidal areas and coastal habitats; sea ice and icebergs; oil spill imaging; joint use of SAR and collaborative signals; and finally sea state and wind speed. This book, with its comprehensive coverage of SAR for maritime surveillance applications, will be a valuable resource for SAR system engineers, private and public corporations, oceanographers, and remote-sensing researchers and end-users.
In the tradition of the previous three conferences, the proceedings of the 4th Ultra-Wideband Short-Pulse Electromagnetics Conference explores topics including pulse generation and detection; broadband electronic systems; antennas - theory, design, experiments and systems; pulse propagation; scattering theory; signal processing; and buried targets - detection and identification.
An up-to-date analysis of the SAR wavefront reconstruction signal theory and its digital implementation With the advent of fast computing and digital information processing techniques, synthetic aperture radar (SAR) technology has become both more powerful and more accurate. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms addresses these recent developments, providing a complete, up-to-date analysis of SAR and its associated digital signal processing algorithms. This book introduces the wavefront reconstruction signal theory that underlies the best SAR imaging methods and provides clear guidelines to system design, implementation, and applications in diverse areas—from airborne reconnaissance to topographic imaging of ocean floors to surveillance and air traffic control to medical imaging techniques, and numerous others. Enabling professionals in radar signal and image processing to use synthetic aperture technology to its fullest potential, this work:
Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRM The role that modelling and simulation plays in evaluating RRM performance Description of the simulation tool Adapt_MFR Detailed descriptions and performance results for specific adaptive RRM techniques
As we all know, weather radar came into existence during the Second World War when aircraft detection radars had their vision limited by echoes from rain bearing clouds. What was often considered to be of nuisance value by the air force personnel trying to locate enemy aircraft was seen as an opportunity by the weather men. Thus adversity in one field was converted into an opportunity in another. Since then weather radar has found myriad applications with the increased sophistication of technology and processing systems. It has now become an indispensable tool for the operational forecasters, cloud physicists and atmospheric scientists. The current generation radar is but a distant echo of the radars of the 1940s. As a result, its operation and maintenance have become very complex, like the technology it uses. Therefore, there is a definite requirement of focussing our special attention not only on the science of radar meteorology but also on its operational aspects. The present book, as pointed out by the author, attempts to fill this gap. The author has presented the subject with a balanced blend of science, technology and practice. The canvas is indeed very broad. Starting with the history of weather radar development the book goes on to discuss in a lucid style the physics of the atmosphere related to radar observation, radar technology, echo interpretation, different applications and finally attempts to look into the future to indicate potential new opportunities in this field.
International Weather Radar Networking covers all aspects of the subject in a collection of contributions drawn from all over the world. Of particular interest are the papers describing work in Eastern Europe and papers reviewing of the achievements of the Commission of the European Communities COST-73 project. During the last twenty years there has been a rapid growth in the number of digital radars deployed for operational use in Western Europe. There are now around 100, of which about half have a Doppler capability, providing wind as well as reflectivity information. The international exchange of the data from these systems promises a great enhancement of the benefits to weather forecasting and commercial users. This volume reports work being undertaken to realize those benefits and points the way to future developments of radar technology.
Offers the only consolidated reference on radar polarimetry design, analysis, and application and explains the most recent development in polarization system design and application. Illustrated with 150 figures, 10 tablets, and 9 full-color SAR images.
Stealth technology is a crucial pre-requisite in the combat zone, where swiftness, surprise and initiative are the decisive elements for survivability. The supreme goal here is to reduce the visibility of military vehicles by shaping, application of radar absorbing materials, passive cancellation, active cancellation etc. With respect to multilayered radar absorbing structures (RAS), this book presents an efficient algorithm based on particle swarm optimization (PSO), for the material selection as well as optimization of thickness of multilayered RAS models considering both normal as well as oblique incidence cases. It includes a thorough overview of the theoretical background required for the analysis of multilayered RAS as well as the step-by-step procedure for the implementation of PSO-based algorithm. The accuracy and computational efficiency of the indigenously developed code is also clearly established using relevant validations and case studies. FEATURES Provides step-by-step procedure for the implementation of particle swarm optimization (PSO) based algorithm in the context of multilayered radar absorbing structures (RAS) design Helps to understand the EM design, analysis and optimization of multilayered RAS Describes the theoretical background required for the analysis of multilayered RAS Illustrates in detail the theoretical formulation supported by intuitive ray diagrams and comprehensive flowcharts to implement the algorithm with ease Includes elaborate validations and case studies This book will serve as a valuable resource for students, researchers, scientists, and engineers involved in the electromagnetic design and development of multi-layered radar absorbing structures.
The book comprises a new method of solving the integral equation of Leontovich, the most rigorous and most effective equation for the current in thin linear antennas. The book describes the features of the new method in its application in various types of antennas. It considers new ways of analyzing antennas, in particular in the calculation of an antenna gain based on main radiation patterns and the calculation of the directional characteristics of radiators with known distribution of current amplitude. The method of electrostatic analogy proposed by the author, provides the base for comparison of electromagnetic fields of high-frequency currents and electrostatic charges located on linear conductors to improve the directional characteristics of log-periodic and director-type antennas. A new approach to the analysis of the electrical characteristics of a microstrip antenna, which allows expansion of its operation range, is substantiated and developed. New results of antenna synthesis are obtained. The second part of the book is devoted to specific types of antennas (the author had a significant role in their creation). Particular attention is given to ship antennas for different frequency ranges. The book is intended for professionals, working in electrodynamics and those working on development, placement and exploitation of antennas. It will be useful for lecturers (university-level professors), teachers, students of radio engineering and researchers working in various fields of radio electronics and interested in an in-depth study of theoretical problems and designs f antennas. It can also be used for short university courses.
Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach demonstrates the use of image simulation for SAR. It covers the various applications of SAR (including feature extraction, target classification, and change detection), provides a complete understanding of SAR principles, and illustrates the complete chain of a SAR operation. The book places special emphasis on a ground-based SAR, but also explains space and air-borne systems. It contains chapters on signal speckle, radar-signal models, sensor-trajectory models, SAR-image focusing, platform-motion compensation, and microwave-scattering from random media. While discussing SAR image focusing and motion compensation, it presents processing algorithms and applications that feature extraction, target classification, and change detection. It also provides samples of simulation on various scenarios, and includes simulation flowcharts and results that are detailed throughout the book. Introducing SAR imaging from a systems point of view, the author: Considers the recent development of MIMO SAR technology Includes selected GPU implementation Provides a numerical analysis of system parameters (including platforms, sensor, and image focusing, and their influence) Explores wave-target interactions, signal transmission and reception, image formation, motion compensation Covers all platform motion compensation and error analysis, and their impact on final image radiometric and geometric quality Describes a ground-based SFMCW system Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach is dedicated to the use, study, and development of SAR systems. The book focuses on image formation or focusing, treats platform motion and image focusing, and is suitable for students, radar engineers, and micr |
You may like...
Short-Range Micro-Motion Sensing with…
Changzhan Gu, Jaime Lien
Hardcover
Robotic Navigation and Mapping with…
Martin Adams, Ebi Jose, …
Hardcover
R4,508
Discovery Miles 45 080
Ground Penetrating Radar - Theory and…
Erica Carrick Utsi
Paperback
Ground Penetrating Radar - Improving…
X. Lucas Travassos, Mario F. Pantoja, …
Hardcover
|