![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Communications engineering / telecommunications > Radar
This definitive book supplies the information needed to specify and design a multifunction array radar system. With minimal mathematics, the book shows how radars smaller in aperture and power can meet demands formerly conceived for the larger rotating and phased array radars.
The first maritime surveillance radars in World War II quickly discovered that returns from the sea, soon to be known as sea clutter, were often the limiting factor when attempting to detect small targets while controlling false alarms. This remains true for modern radars, where the detection of small, slow moving targets on a rough sea surface remains one of the main drivers for maritime radar design, particularly in the development of detection processing. The design, development and testing of radar signal processing for maritime surveillance requires a very detailed understanding of the characteristics of radar sea clutter and of the combined target and clutter returns. This book provides an updated and comprehensive review of the latest research into radar sea clutter and detection methods for targets in sea clutter. The emphasis is on understanding the characteristics of radar sea clutter as observed with different radars, viewing geometries and environmental conditions. This understanding is assisted by the development of mathematical models that are used in the radar design process. In recent years there has been an increased interest in operating at higher altitudes, resulting in the sea surface being illuminated with larger grazing angles than used in traditional airborne surveillance platforms or ground-based systems. There has also been significant research into bistatic operation, including passive radars using illuminators of opportunity. The use of coherent and multi-aperture systems in maritime radar are also of increasing interest and these new application areas are also covered in this book.
This reference spells out the fundamentals of Augmented with 1024 equations, 138 references and 82 figures and 69 problems, this book provides an introduction to and overview of signal detection and estimation. detection and estimation theory, reviews mathemat ical techniques and gives the essential background needed to understand the more advanced material, provides detailed examples stated and solved showing all the necessary steps, and contains chapter-end problems and provides step-by-step solutions that facilitate self-study. Each chapter provides an introduction, summary, problems and list of references and expands upon material covered in the previous chapter.
The Sixth Conference on Ultra-Wideband, Short-Pulse Electromagnetics (UWB SP6), chaired by Eric Mokole of the United States Naval Research Laboratory (NRL) and hosted by the NRL and the United States Naval Academy (USNA), was held at the USNA in Annapolis Maryland (USA) from 3-7 June 2002. UWB SP6 was part of the AMEREM 2002 Symposium, chaired by Terence Wieting of the NRL. AMEREM 2002 continued the series of international conferences that were held in: Brooklyn New York at the Polytechnic University in 1992 and 1994; Albuquerque New Mexico in 1996 as part of AMEREM '96; Tel-Aviv Israel in 1998 as part of EUROEM '98; and Edinburgh Scotland in 2000 as part of EUROEM 2000. The next conference (UWB SP7) will be held from 12-16 July 2004 at Otto von Guericke University in Magdeburg Germany (EUROEM 2004) and will be chaired by Frank Sabath. The purpose of these meetings is: to focus on advanced technologies for the generation, radiation, and detection of ultrawideband (UWB) short-pulse signals, taking into account their propagation about, scattering from, and coupling to targets and media of interest; to report on developments in supporting mathematical and numerical methods; and to describe current and potential future applications of the technology. The session topics of UWB-SP6 included electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), pulsed, . power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques.
The essence of cryptology is the making and breaking of codes and ciphers. This is the second volume of articles (the first was titled Cryptologia yesterday, today and tomorrow ) culled from Cryptologia (Rose-Hulman Institute of Technology, Terre Haute, IN). The articles are divided into five sectio
Low probability of intercept (LPI) radar is increasingly critical to covert surveillance, target tracking and stealth operations - as is the capability to detect it. Now, the world's most authoritative book on LPI emitter design and counter-LPI techniques explores the latest advances in the field in a new edition complete with ready-to-use MATLAB software simulations for every LPI modulation in the book. Supported by 360 task-clarifying illustrations, the book offers radar engineers expert guidance on the design of LPI emitter and intercept receivers and the development of digital signal processing techniques for detecting and classifying LPI modulations. This titleincludes a CD-ROM! It contains valuable MATLAB programs that help professionals design various LPI emitter architectures and waveform modulations to help them with their detection and classification work.
The first two international conferences on Ultra-Wideband (UWB), Short-Pulse (SP) Electromagnetics were held at Polytechnic University, Brooklyn, New York in 1992 and 1994. Their purpose was to focus on advanced technologies for generating, radiating, and detecting UWB, SP signals, on mathematical methods, their propagation and scattering, and on current as well as potential future applications. The success of these two conferences led to the desirability of scheduling a third conference. Impetus was provided by the electromagnetics community and discussions led by Carl Baum and Larry Carin resulted in the suggestion that the UWB conferences be moved around, say to government laboratories such as Phillips Laboratory. Consequently the decision was made by the Permanent HPEM Committee to expand AMEREM '96 to include the Third Ultra-Wide Band, Short-Pulse (UWB, SP 3) with the Third Unexploded Ordnance Detec tion and Range Remediation Conference (UXO) and the HPEMINEM Conference in Albuquerque, New Mexico during the period May 27-31, 1996. Planning is now underway for EUROEM '98 in June, 1998 in Tel Aviv, Israel. Joseph Shiloh is the conference chairman. A fourth UWB, SP meeting is planned as a part of this conference and Ehud Heyman will coordinate this part of the meeting. The papers which appear in this volume, the third in the UWB, SP series, update subject areas from the earlier UWB, SP conferences. These topics include pulse generation and detection, antennas, pulse propagation, scattering theory, signal processing, broadband electronic systems, and buried targets."
Including a systematic introduction to the fundamental principles of microwave radar, this text presents an extensive discussion of radar imaging. It also features information on image superresolution, automatic target recognition, moving target indication, and space-time adaptive processing (STAP).
The most complete compilation of millimeter-wave theory and data available, this book addresses those phenomenological characteristics of radar clutter and propagation in the millimeter-wave region that are of particular importance in the design, test and permutation of millimeter-wave sensors. The text provides in-depth information on both electromagnetic propagation and clutter backscatter effects in the millimeter-wave region. Nicholas C. Currie is also the editor of "Radar Reflectivity Measurement: Techniques and Applications" and "Principles and Applications of Millimeter-Wave Radar".
This is a reference work for EW engineers which is also intended for university use in advanced undergraduate or graduate-level courses in EW, radar, and aerospace systems. This text reviews the fundamental concepts and physical principles underlying EW receiving systems design analysis, and performance evaluation. The main discussion focuses on radar signals in military applications.
Radar Principles for the Non-specialist, Third Edition continues its popular tradition: to distil the very complex technology of radar into its fundamentals, tying them to the laws of nature on one end and to the most modern and complex systems on the other. It starts with electromagnetic propagation, describes a radar of the utmost simplicity, and derives the radar range equation from that simple radar. Once the radar range equation is available, the book attacks the meaning of each term in it, moving through antennas, detection and tracking, radar cross-sections, waveforms and signal processing, and systems applications. At the finish, the reader should be able to do an acceptable, first order radar design and to critique the design of others. Students, engineers, scientists and managers will benefit from this book. The more noticeable enhancements to the third edition are the additions of equation numbers, more numerical examples, tables and figures showing many of the concepts numerically, and exercises for almost all of the concepts. These enhancements make the book easier to learn from and easier to teach out of.
The multielement systems have been widely used in many fields of astron omy and radio science in the last decades. This is caused by the increasing demands on the resolution and sensitivity of such systems over the wide range of the electromagnetic wavelengths, from gamma up to radio. The ground-based optical and radio interferometers, gamma-ray and X-ray or bital telescopes, antenna arrays of radio telescopes and also some other radio devices belong to scientific instruments using multielement systems. There fore, the current problems of the optimal construction of such systems, or precisely, those of searching for the best arrangement of the elements in them, were formulated. A rather large number of scientific papers, including those of the authors, is devoted to these problems, and we believe that the time has come to integrate the basic results of the papers into the mono graph. The offered book consists of three parts. The first part is concerned with the optimal synthesis of optical and radio interferometers of various types and purposes; the synthesis of non-equidistant antenna arrays is con sidered in the second part; and the methods for the construction of coded masks for X-ray and gamma-ray orbital telescopes are expounded in the third one. Since in the text combinatorial constructions which are little known to astronomers are used, the necessary information is given in the appendices. Various tables containing the parameters of the systems consid ered are also represented."
Includes full color and black and white illustrations, This handbook is designed to aid electronic warfare and radar systems engineers in making general estimations regarding capabilities of systems. This handbook is sponsored by the NAVAIR Director of Electronic Warfare / Combat Systems. Chapters include: Fundamentals; Antennas; Radar Equations; Radar and Receiver Characteristics and Test; Microwave / RF Components; Electro-optics an IR; Aircraft Dynamics Considerations; Date Transfer Busses; Glossary; Abbreviations and Acronyms.
Modern airborne and spaceborne imaging radars, known as synthetic aperture radars (SARs), are capable of producing high-quality pictures of the earth's surface while avoiding some of the shortcomings of certain other forms of remote imaging systems. Primarily, radar overcomes the nighttime limitations of optical cameras, and the cloud- cover limitations of both optical and infrared imagers. In addition, because imaging radars use a form of coherent illumination, they can be used in certain special modes such as interferometry, to produce some unique derivative image products that incoherent systems cannot. One such product is a highly accurate digital terrain elevation map (DTEM). The most recent (ca. 1980) version of imaging radar, known as spotlight-mode SAR, can produce imagery with spatial resolution that begins to approach that of remote optical imagers. For all of these reasons, synthetic aperture radar imaging is rapidly becoming a key technology in the world of modern remote sensing. Much of the basic workings' of synthetic aperture radars is rooted in the concepts of signal processing. Starting with that premise, this book explores in depth the fundamental principles upon which the spotlight mode of SAR imaging is constructed, using almost exclusively the language, concepts, and major building blocks of signal processing. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach is intended for a variety of audiences. Engineers and scientists working in the field of remote sensing but who do not have experience with SAR imaging will find an easy entrance into what can seem at times a very complicated subject. Experienced radar engineers will find that the book describes several modern areas of SAR processing that they might not have explored previously, e.g. interferometric SAR for change detection and terrain elevation mapping, or modern non-parametric approaches to SAR autofocus. Senior undergraduates (primarily in electrical engineering) who have had courses in digital signal and image processing, but who have had no exposure to SAR could find the book useful in a one-semester course as a reference.
A valuable resource for radar engineers and managers of all levels, this revised edition provides an introduction to the capabilities and limitations of radar, as well as a detailed advanced study of key radar signal processing topics. The book explains the concepts and theory of radar signal processing such as resolution, ambiguities, antennas, waveforms, the theory of detecting targets in noise and/or clutter, and tracking using data processing. It also presents equations for the determination of maximum radar range in free space and as affected by multipath and the horizon.
The rapid development of electronics and its engineering applications ensures that new topics are always competing for a place in university and polytechnic courses. But it is often difficult for lecturers to find suitable books for recom mendation to students, particularly when a topic is covered by a short lecture module, or as an 'option'. Macmillan New Electronics offers introductions to advanced topics. The level is generally that of second and subsequent years of undergraduate courses in electronic and electrical engineering, computer science and physics. Some of the authors will paint with a broad brush; others will concentrate on a narrower topic, and cover it in greater detail. But in all cases the titles in the Series will provide a sound basis for further reading of the specialist literature, and an up-to-date appreciation of practical applications and likely trends. The level, scope and approach of the Series should also appeal to practising engineers and scientists encountering an area of electronics for the first time, or needing a rapid and authoritative update. vii Preface The basic principles of radar do not change, but the design and technology of practical radar systems have developed rapidly in recent years. Advances in digital electronics and computing are having a major impact, especially in radar signal processing and display. I hope that this book will prove a useful intro duction to such developments, as well as to the underlying principles of radar detection."
This book clearly describes all the radar detection and jamming equations you need to design and analyze search and track radars. It reviews the hardware, theories, and techniques involved in modern EW systems signal processing and discusses present and future trends in EW technology.
Space-time adaptive processing (STAP) is an exciting technology for advanced radar systems that allows for significant performance enhancements over conventional approaches. Based on a time-tested course taught in industry, government and academia, this second edition reviews basic STAP concepts and methods, placing emphasis on implementation in real-world systems. It addresses the needs of radar engineers who are seeking to apply effective STAP techniques to their systems, and serves as an excellent reference for non-radar specialists with an interest in the signal processing applications of STAP. Engineers find the analysis tools they need to assess the impact of STAP on a variety of important radar applications. A toolkit of STAP algorithms and implementation techniques allows practitioners the flexibility of adapting the best methods to their application. In addition, this second edition adds brand new coverage on "STAP on Transmit" and "Knowledge-Aided STAP (KA-STAP). Market Radar systems engineers and managers; signal processing engineers and managers; and researchers and academics involved in these areas.
A resource like no other—the first comprehensive guide to phase unwrapping Phase unwrapping is a mathematical problem-solving technique increasingly used in synthetic aperture radar (SAR) interferometry, optical interferometry, adaptive optics, and medical imaging. In Two-Dimensional Phase Unwrapping, two internationally recognized experts sort through the multitude of ideas and algorithms cluttering current research, explain clearly how to solve phase unwrapping problems, and provide practicable algorithms that can be applied to problems encountered in diverse disciplines. Complete with case studies and examples as well as hundreds of images and figures illustrating the concepts, this book features:
Two-Dimensional Phase Unwrapping skillfully integrates concepts, algorithms, software, and examples into a powerful benchmark against which new ideas and algorithms for phase unwrapping can be tested. This unique introduction to a dynamic, rapidly evolving field is essential for professionals and graduate students in SAR interferometry, optical interferometry, adaptive optics, and magnetic resonance imaging (MRI).
Epoch-making progress in meteorology and atmospheric science has always been hastened by the development of advanced observational technologies, in particular, radar technology. This technology depends on a wide range of sciences involving diverse disciplines, from electrical engineering and electronics to computer sciences and atmospheric physics. Meteorological radar and atmospheric radar each has a different history and has been developed independently. Particular radar activities have been conducted within their own communities. Although the technology of these radars draws upon many common fields, until now the interrelatedness and interdisciplinary nature of the research fields have not been consistently discussed in one volume containing fundamental theories, observational methods, and results. This book is by two authors who, with long careers in the two fields, one in academia and the other in industry, are ideal partners for writing on the comprehensive science and technology of radars for meteorological and atmospheric observations.
The purpose of the Ultra-Wideband Short-Pulse Electromagnetics Conference series is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation and scattering from and coupling to targets of interest. This Conference series reports on developments in supporting mathematical and numerical methods and presents current and potential future applications of the technology. Ultra-Wideband Short-Pulse Electromagnetics 8 is based on the American Electromagnetics 2006 conference held from June 3-7 in Albuquerque, New Mexico. Topical areas covered in this volume include pulse radiation and measurement, scattering theory, target detection and identification, antennas, signal processing, and communications.
The quest for high resolution has preoccupied radio astronomers ever since radio waves were first detected from space fifty years ago. This venture was par ticularly stimulated by the discovery of quasars, and led to the development of interferometer techniques using baselines of transglobal dimensions. These meth ods have become known as Very Long Baseline Interferometry (VLBI). Arrays of radio telescopes situated all over the Earth (or even in space) are regularly used for researches in radio astronomy, reaching resolutions as small as a fraction of a milli arcsecond. The technique also allows the measurement of the positions of the radio telescopes to a few millimeters and so VLBI has become a major tool in geodesy and the study of the rotation of the Earth. VLBI has now passed the pioneer stage and is becoming a standard facility available to astronomers and geodesists, requiring the coordination of the operations of indpendently owned radio telescopes around the world. In Europe observatories from England, Federal Republic of Germany, France, Italy, Poland, Sweden and The Netherlands are coordinated in their VLBI activity by the European VLBI Network Consortium (EVN). The Programme Committee of the EVN allocates time to scientific projects on a routine basis three times a year. The Unites States has a similar arrangement of a network of independent radio observatories, and joint experiments using 'Global Network' are often made." |
![]() ![]() You may like...
SHRM-CP/SHRM-SCP Certification…
Beverly Dance, Dory Willer, …
Paperback
R1,186
Discovery Miles 11 860
Cambridge International A Level…
Brian Gillinder, Brian Sargent
Paperback
R1,390
Discovery Miles 13 900
Catching Stories - A Practical Guide to…
Donna M. DeBlasio, Charles F. Ganzert, …
Hardcover
R1,117
Discovery Miles 11 170
Doing Recent History - On Privacy…
Claire Bond Potter, Renee C. Romano
Hardcover
R2,741
Discovery Miles 27 410
|